16,134 research outputs found
Evolutionary Divergence in Developmental Strategies and Neuromodulatory Control Systems of Two Amphibian Locomotor Networks
Attempts to understand the neural mechanisms which produce behaviour must consider both prevailing sensory cues and the central cellular and synaptic changes they direct. At each level, neuromodulation can additionally shape the final output. We have investigated neuromodulation in the developing spinal motor networks in hatchling tadpoles of two closely related amphibians, Xenopus laevis and Rana temporaria to examine the subtle differences in their behaviours that could be attributed to their evolutionary divergence.
At the point of hatching, both species can swim in response to a mechanosensory stimulus, however Rana embryos often display a more forceful, non-locomotory coiling behaviour. Whilst the synaptic drive that underlies these behaviours appears similar, subtle inter-specific differences in neuronal properties shape motor outputs in different ways. For example, Rana neurons express N-methyl-D-aspartate (NMDA)/serotonin (5-HT)-dependent oscillations, not present in hatchling Xenopus and many also exhibit a prominent slow spike after-hyperpolarisation. Such properties may endow the spinal circuitry of Rana with the ability to produce a more flexible range of outputs.
Finally, we compare the roles of the neuromodulators 5-HT, noradrenaline (NA) and nitric oxide (NO) in shaping motor outputs. 5-HT increases burst durations during swimming in both Xenopus and Rana, but 5-HT dramatically slows the cycle period in Rana with little effect in Xenopus. Three distinct, but presumably homologous NO-containing brainstem clusters of neurons have been described, yet the effects of NO differ between species. In Xenopus, NO slows and shortens swimming in a manner similar to NA, yet in Rana NO and NA elicit the non-rhythmic coiling pattern
Close pairs of galaxies with different activity levels
We selected and studied 180 pairs with dV < 800 km/s and Dp < 60 kpc
containing Markarian (MRK) galaxies to investigate the dependence of galaxies'
integral parameters, star-formation (SF) and active galactic nuclei (AGN)
properties on kinematics of pairs, their structure and large-scale
environments. Projected radial separation Dp and perturbation level P are
better measures of interaction strength than dV. The latter correlates with the
density of large-scale environment and with the morphologies of galaxies. Both
galaxies in a pair are of the same nature, the only difference is that MRK
galaxies are usually righter than their neighbors. Specific star formation
rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex
higher than that of galaxies in pairs with larger Dp or dV. Closeness of a
neighbor with the same and later morphological type increases the SSFR, while
earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger
SF and AGN more effectively than minor ones. The fraction of AGNs is higher in
more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger
interacting systems than star-forming and passive galaxies. There are
correlations of both SSFRs and spectral properties of nuclei between pair
members.Comment: 4 pages, 3 figures. arXiv admin note: substantial text overlap with
arXiv:1310.024
Herding cats: observing live coding in the wild
After a momentous decade of live coding activities, this paper seeks to explore the practice with the aim of situating it in the history of contemporary arts and music. The article introduces several key points of investigation in live coding research and discusses some examples of how live coding practitioners engage with these points in their system design and performances. In the light of the extremely diverse manifestations of live coding activities, the problem of defining the practice is discussed, and the question raised whether live coding will actually be necessary as an independent category
Close neighbors of Markarian galaxies. II. Statistics and discussions
According to the database from the first paper, we select 180 pairs with dV <
800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies. We study the
dependence of galaxies integral parameters, star-formation (SF) and active
galactic nuclei (AGN) properties on kinematics of pairs, their structure and
large-scale environments. Following main results were obtained: projected
radial separation Dp between galaxies correlates with the perturbation level P
of the pairs. Both parameters do not correlate with line-of-sight velocity
difference dV of galaxies. Dp and P are better measures of interaction strength
than dV. The latter correlates with the density of large-scale environment and
with the morphologies of galaxies. Both galaxies in a pair are of the same
nature, the only difference is that MRK galaxies are usually brighter than
their neighbors in average by 0.9 mag. Specific star formation rates (SSFR) of
galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that
of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the
same and later morphological type increases the SSFR, while earlier-type
neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN
more effectively than minor ones. The fraction of AGNs is higher in more
perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger
interacting systems than star-forming and passive galaxies. There are
correlations of both SSFRs and spectral properties of nuclei between pair
members.Comment: 13 pages, 8 figures, 2 table
Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility
The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity
Application of Dynamic System Identification to Timber Bridges
A method of global nondestructive evaluation for identifying local damage and decay in timber beams was developed in previous analytical studies and verified experimentally using simply supported beams in the laboratory. The method employs experimental modal analysis and an algorithm that monitors changes in modal strain energy between the mode shapes of a damaged structure with respect to the undamaged structure. A simple three-girder bridge was built and tested in a laboratory to investigate the capability and limitations of the method for detecting damage in a multimember timber structure. The laboratory tests showed that the method can correctly detect and locate a simulated pocket of decay inflicted at the end of a girder as well as detect a notch removed from the midspan of a girder. The tests showed that the method can correctly detect damage simultaneously at two locations within the bridge, but also that large magnitudes of damage at one location can mask smaller magnitudes of damage at another location. When a calibrated baseline model is used to represent the undamaged state of the bridge, the results show that the method of nondestructive evaluation is able to detect each case of inflicted damage, but with some increase in localization error
The Smallest Mass Ratio Young Star Spectroscopic Binaries
Using high resolution near-infrared spectroscopy with the Keck telescope, we
have detected the radial velocity signatures of the cool secondary components
in four optically identified pre-main-sequence, single-lined spectroscopic
binaries. All are weak-lined T Tauri stars with well-defined center of mass
velocities. The mass ratio for one young binary, NTTS 160905-1859, is M2/M1 =
0.18+/-0.01, the smallest yet measured dynamically for a pre-main-sequence
spectroscopic binary. These new results demonstrate the power of infrared
spectroscopy for the dynamical identification of cool secondaries. Visible
light spectroscopy, to date, has not revealed any pre-main-sequence secondary
stars with masses <0.5 M_sun, while two of the young systems reported here are
in that range. We compare our targets with a compilation of the published young
double-lined spectroscopic binaries and discuss our unique contribution to this
sample.Comment: Accepted for publication in the April, 2002, ApJ; 6 figure
The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy's Central Black Hole: A Paradox of Youth
We have obtained the first detection of spectral absorption lines in one of
the high-velocity stars in the vicinity of the Galaxy's central supermassive
black hole. Both Brgamma (2.1661 micron) and He I (2.1126 micron) are seen in
absorption in S0-2 with equivalent widths (2.8+-0.3 Ang & 1.7+-0.4 Ang) and an
inferred stellar rotational velocity (220+-40 km/s) that are consistent with
that of an O8-B0 dwarf, which suggests that it is a massive (~15 Msun), young
(<10 Myr) main sequence star. This presents a major challenge to star formation
theories, given the strong tidal forces that prevail over all distances reached
by S0-2 in its current orbit (130 - 1900 AU) and the difficulty in migrating
this star inward during its lifetime from further out where tidal forces should
no longer preclude star formation. The radial velocity measurements (-510+-40
km/s) and our reported proper motions for S0-2 strongly constrain its orbit,
providing a direct measure of the black hole mass of 4.1(+-0.6)x10^6(Ro/8kpc)^3
Msun. The Keplerian orbit parameters have uncertainities that are reduced by a
factor of 2-3 compared to previously reported values and include, for the first
time, an independent solution for the dynamical center; this location, while
consistent with the nominal infrared position of Sgr A*, is localized to a
factor of 5 more precisely (+-2 milli-arcsec). Furthermore, the ambiguity in
the inclination of the orbit is resolved with the addition of the radial
velocity measurement, indicating that the star is behind the black hole at the
time of closest approach and counter-revolving against the Galaxy. With further
radial velocity measurements in the next few years, the orbit of S0-2 will
provide the most robust estimate of the distance to the Galactic Center.Comment: 14 pages, Latex, Accepted for Publication in ApJ Letter
- …
