5,951 research outputs found

    The art of HIV elimination: past and present science

    Get PDF
    Introduction: Remarkable strides have been made in controlling the HIV epidemic, although not enough to achieve epidemic control. More recently, interest in biomedical HIV control approaches has increased, but substantial challenges with the HIV cascade of care hinder successful implementation. We summarise all available HIV prevention methods and make recommendations on how to address current challenges. Discussion: In the early days of the epidemic, behavioural approaches to control the HIV dominated, and the few available evidence-based interventions demonstrated to reduce HIV transmission were applied independently from one another. More recently, it has become clear that combination prevention strategies targeted to high transmission geographies and people at most risk of infections are required to achieve epidemic control. Biomedical strategies such as male medical circumcision and antiretroviral therapy for treatment in HIV-positive individuals and as preexposure prophylaxis in HIV-negative individuals provide immense promise for the future of HIV control. In resourcerich settings, the threat of HIV treatment optimism resulting in increased sexual risk taking has been observed and there are concerns that as ART roll-out matures in resource-poor settings and the benefits of ART become clearly visible, behavioural disinhibition may also become a challenge in those settings. Unfortunately, an efficacious vaccine, a strategy which could potentially halt the HIV epidemic, remains elusive. Conclusion: Combination HIV prevention offers a logical approach to HIV control, although what and how the available options should be combined is contextual. Therefore, knowledge of the local or national drivers of HIV infection is paramount. Problems with the HIV care continuum remain of concern, hindering progress towards the UNAIDS target of 90-90-90 by 2020. Research is needed on combination interventions that address all the steps of the cascade as the steps are not independent of each other. Until these issues are addressed, HIV elimination may remain an unattainable goal

    Green consumer markets in the fight against climate change

    Get PDF
    Climate change has become one of the greatest threats to environmental security, as attested by the growing frequency of severe flooding and storms, extreme temperatures and droughts. Accordingly, the European Union’s (EU) 6th Environment Action Programme (2010) lists tackling climate change as its first priority. A key aim of the EU has been to cut CO2 emissions, a major factor in climate change, by 8% until 2012 and 20% until 2020. The European Commission has proposed the encouragement of private consumer market for green products and services as one of several solutions to this problem. However, existing research suggests that the market share of these products has been only 3%, although 30% of individuals favour environmental and ethical goods. This article uses Public Goods Theory to explain why the contribution of the green consumer market to fighting climate change has been and possibly may remain limited without further public intervention

    Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

    Get PDF
    Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.Comment: ACCV 201

    New way to achieve chaotic synchronization in spatially extended systems

    Full text link
    We study the spatio-temporal behavior of simple coupled map lattices with periodic boundary conditions. The local dynamics is governed by two maps, namely, the sine circle map and the logistic map respectively. It is found that even though the spatial behavior is irregular for the regularly coupled (nearest neighbor coupling) system, the spatially synchronized (chaotic synchronization) as well as periodic solution may be obtained by the introduction of three long range couplings at the cost of three nearest neighbor couplings.Comment: 5 pages (revtex), 7 figures (eps, included

    "Doubled" generalized Landau-Lifshiz hierarchies and special quasigraded Lie algebras

    Full text link
    Using special quasigraded Lie algebras we obtain new hierarchies of integrable nonlinear vector equations admitting zero-curvature representations. Among them the most interesting is extension of the generalized Landau-Lifshitz hierarchy which we call "doubled" generalized Landau-Lifshiz hierarchy. This hierarchy can be also interpreted as an anisotropic vector generalization of "modified" Sine-Gordon hierarchy or as a very special vector generalization of so(3) anisotropic chiral field hierarchy.Comment: 16 pages, no figures, submitted to Journal of Physics

    Learning 3D Human Pose from Structure and Motion

    Full text link
    3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose two anatomically inspired loss functions and use them with a weakly-supervised learning framework to jointly learn from large-scale in-the-wild 2D and indoor/synthetic 3D data. We also present a simple temporal network that exploits temporal and structural cues present in predicted pose sequences to temporally harmonize the pose estimations. We carefully analyze the proposed contributions through loss surface visualizations and sensitivity analysis to facilitate deeper understanding of their working mechanism. Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity graphics card.Comment: ECCV 2018. Project page: https://www.cse.iitb.ac.in/~rdabral/3DPose

    Multi-Bunch Solutions of Differential-Difference Equation for Traffic Flow

    Full text link
    Newell-Whitham type car-following model with hyperbolic tangent optimal velocity function in a one-lane circuit has a finite set of the exact solutions for steady traveling wave, which expressed by elliptic theta function. Each solution of the set describes a density wave with definite number of car-bunches in the circuit. By the numerical simulation, we observe a transition process from a uniform flow to the one-bunch analytic solution, which seems to be an attractor of the system. In the process, the system shows a series of cascade transitions visiting the configurations closely similar to the higher multi-bunch solutions in the set.Comment: revtex, 7 pages, 5 figure

    Modelling trade offs between public and private conservation policies

    Get PDF
    To reduce global biodiversity loss, there is an urgent need to determine the most efficient allocation of conservation resources. Recently, there has been a growing trend for many governments to supplement public ownership and management of reserves with incentive programs for conservation on private land. At the same time, policies to promote conservation on private land are rarely evaluated in terms of their ecological consequences. This raises important questions, such as the extent to which private land conservation can improve conservation outcomes, and how it should be mixed with more traditional public land conservation. We address these questions, using a general framework for modelling environmental policies and a case study examining the conservation of endangered native grasslands to the west of Melbourne, Australia. Specifically, we examine three policies that involve: i) spending all resources on creating public conservation areas; ii) spending all resources on an ongoing incentive program where private landholders are paid to manage vegetation on their property with 5-year contracts; and iii) splitting resources between these two approaches. The performance of each strategy is quantified with a vegetation condition change model that predicts future changes in grassland quality. Of the policies tested, no one policy was always best and policy performance depended on the objectives of those enacting the policy. This work demonstrates a general method for evaluating environmental policies and highlights the utility of a model which combines ecological and socioeconomic processes.Comment: 20 pages, 5 figure

    Patterns from preheating

    Get PDF
    The formation of regular patterns is a well-known phenomenon in condensed matter physics. Systems that exhibit pattern formation are typically driven and dissipative with pattern formation occurring in the weakly non-linear regime and sometimes even in more strongly non-linear regions of parameter space. In the early universe, parametric resonance can drive explosive particle production called preheating. The fields that are populated then decay quantum mechanically if their particles are unstable. Thus, during preheating, a driven-dissipative system exists. In this paper, we show that a self-coupled inflaton oscillating in its potential at the end of inflation can exhibit pattern formation.Comment: 4 pages, RevTex, 6 figure

    Functional representation of the Ablowitz-Ladik hierarchy. II

    Full text link
    In this paper I continue studies of the functional representation of the Ablowitz-Ladik hierarchy (ALH). Using formal series solutions of the zero-curvature condition I rederive the functional equations for the tau-functions of the ALH and obtain some new equations which provide more straightforward description of the ALH and which were absent in the previous paper. These results are used to establish relations between the ALH and the discrete-time nonlinear Schrodinger equations, to deduce the superposition formulae (Fay's identities) for the tau-functions of the hierarchy and to obtain some new results related to the Lax representation of the ALH and its conservation laws. Using the previously found connections between the ALH and other integrable systems I derive functional equations which are equivalent to the AKNS, derivative nonlinear Schrodinger and Davey-Stewartson hierarchies.Comment: arxiv version is already officia
    corecore