9,863 research outputs found

    Kinetics of a frictional granular motor

    Full text link
    Within the framework of a Boltzmann-Lorentz equation, we analyze the dynamics of a granular rotor immersed in a bath of thermalized particles in the presence of a frictional torque on the axis. In numerical simulations of the equation, we observe two scaling regimes at low and high bath temperatures. In the large friction limit, we obtain the exact solution of a model corresponding to asymptotic behavior of the Boltzmann-Lorentz equation. In the limit of large rotor mass and small friction, we derive a Fokker-Planck equation for which the exact solution is also obtained.Comment: 4 pages, 4 Figures, To be published in Phys. Rev. Let

    Research opportunities in loss of red blood cell mass in space flight

    Get PDF
    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight

    Recommendations for high intensity upper body exercise testing

    Get PDF
    Introduction: For given submaximal and maximal peak power outputs aerobic responses to upper body exercise are different to those for lower body exercise (Sawka, 1986: Exercise & Sport Sciences Reviews, 14, 175-211). However, much less is known regarding responses to exercise intensities at and around peak oxygen up take (VO2peak). Purpose: The purpose of this study was to determine the metabolic responses during arm crank ergometry (ACE) below, at and above peak oxygen uptake and to help establish exercise testing guidelines for high intensity upper body exercise. Methods: Following institutional ethical approval fourteen male students (Age 21.1, s = 6.1 years and 2.44 s=0.44 VO2peak) volunteered to take part in this study. Each participant exercised on a table mounted cycle ergometer (Monark 894E, Monark Exercise AB, Sweden). After habituation peak minute power (PMP) was calculated from an incremental test. Subsequently each participant completed four continuous work tests (CWT) to volitional exhaustion at 80%, 90%, 100% and 110% of PMP. All tests were completed at 70 rev∙min-1 with a minimum of 48-h between tests and the order was counterbalanced. Each CWT was preceded by a 5 min warm-up, loaded with a mass corresponding to the participants 80% PMP for 20 s at minutes 2, 3 and 4. Oxygen uptake (VO2), respiratory exchange ratio (RER), heart rate (HR) and ratings of perceived exertion for the arms (local (RPEL) and cardiorespiratory strain (RPECR) were recorded at 1 min, 2 min and at volitional exhaustion. The EMG responses at three sites (flexor carpi ulnaris, biceps brachii and triceps brachii lateral) were recorded using double-differential (16-3000 Hz bandwidth, x300 gain), bipolar, active electrodes (MP-2A, Linton, Norfolk, UK). Electromyographic data were sampled at 1000 Hz and filtered using a 20 to 500 Hz band-pass filter (MP150 Data Acquisition and AcqKnowledge 4.0, Biopac, Goleta, CA). The EMG signals for each muscle were root mean squared (RMS) with a 500-ms sample window. The signal was then normalised, prior to each CWT, as a percentage of the mean of 3 sets of 10 duty cycles completed during the warm-up (see above) when the participants 80% PMP for 20 s was applied. Time to exhaustion (Tlim) was recorded as the performance outcome measure. Data for Tlim were analysed using one-way analysis of variance. Differences in EMG, VO2, RER, HR, RPEL and RPECR were analysed using separate two-way analysis of variance with repeated measures (trial x time). All analyses were performed using the Statistical Package for Social Sciences ( 17.0; SPSS Inc., Chicago, IL). Individual differences in means were located using Bonferroni post-hoc correction. Significance was accepted at P < 0.05. Results: As resistive load increased Tlim decreased (611 s=194, 397 s=99, 268 s=90, 206 s=67s, respectively; P < 0.001, ES = 0.625). Post-hoc analysis revealed that Tlim using 80%PMP was longer than for 90%, 100% and 110% PMP trials (P < 0.001) and 90% was longer than both 100% and 110% PMP trials (P = 0.079, P = 0.001). At exhaustion VO2 was similar across trials (P = 0.413, ES = 0.053), although 80% PMP VO2 tended to be less (2.10 s=0.32 l·min-1) than for 90% (2.29 s=0.37), 100% (2.33 s=0.49) and 110% (2.26 s=0.34). Also, 80% PMP VO2 was less than VO2peak (P = 0.013). There were differences in RER at Tlim (P < 0.001, ES = 0.593) with values increasing with % PMP (1.15 s=0.07, 1.26 s=0.07, 1.36 s=0.10, 1.40 s=0.09, respectively). There were no differences across trials for HR at Tlim (~173 (12); P = 0.834, ES = 0.016) and HR was proportional to %PMP at 1 min, and 2 min. For flexor carpi ulnaris there was an increase in activation as exercise intensity increased (P < 0.001, ES = 0.245). There were a similar responses for biceps brachii and triceps brachii demonstrating an increase in activation with exercise intensity (P <0.001, ES = 0.137, P < 0.001, ES = 0.163, respectively). No differences for RPEL and RPECR were observed at Tlim. Discussion: There was a clear response of Tlim with intensity as expected for lower body exercise (Hill et al., 2002: Medicine and Science in Sports and Exercise, 34(4), 709-714). Despite differences in Tlim across exercise intensities VO2, HR and RPE were similar at exhaustion indicating a functional cardiorespiratory maximum had been reached. As indicated by the RER an increased activation of the anaerobic metabolism with greater exercise intensities (100% and 110%) is likely and therefore this may represent a greater anaerobic component at these two intensities. The increase in EMG activity with intensity could indicate an increase activity with an increase in exercise intensity. Conclusion: It is recommended that due to the combination of muscle activation, oxygen uptake and Tlim that an exercise intensity of 90% or 100% of PMP could be used for high intensity upper body exercise testing

    A failure effects simulation of a low authority flight control augmentation system on a UH-1H helicopter

    Get PDF
    A two-pilot moving base simulator experiment was conducted to assess the effects of servo failures of a flight control system on the transient dynamics of a Bell UH-1H helicopter. The flight control hardware considered was part of the V/STOLAND system built with control authorities of from 20-40%. Servo hardover and oscillatory failures were simulated in each control axis. Measurements were made to determine the adequacy of the failure monitoring system time delay and the servo center and lock time constant, the pilot reaction times, and the altitude and attitude excursions of the helicopter at hover and 60 knots. Safe recoveries were made from all failures under VFR conditions. Pilot reaction times were from 0.5 to 0.75 sec. Reduction of monitor delay times below these values resulted in significantly reduced excursion envelopes. A subsequent flight test was conducted on a UH-1H helicopter with the V/STOLAND system installed. Series servo hardovers were introduced in hover and at 60 knots straight and level. Data from these tests are included for comparison

    A simple method for estimating minimum autorotative descent rate of single rotor helicopters

    Get PDF
    Flight test results of minimum autorotative descent rate are compared with calculations based on the minimum power required for steady level flight. Empirical correction factors are derived that account for differences in energy dissipation between these two flight conditions. A method is also presented for estimating the minimum power coefficient for level flight for any helicopter for use in the empirical estimation procedure of autorotative descent rate

    DNMTs are required for delayed genome instability caused by radiation

    Get PDF
    This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited - Copyright @ 2012 Landes Bioscience.The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.This study is funded by NOTE, BBSRC and the Royal Society Dorothy Hodgkin Research Fellowship

    Landing approach evaluation of an integrated CRT display for general aviation aircraft

    Get PDF
    A flight director adaptable to general aviation aircraft was evaluated for the landing approach task in a twin turbojet business aircraft. The flight director combined aircraft heading, pitch and roll atitude, and ILS (Instrument Landing System) signals into a single picture on a small cathode ray tube (CRT) to give the pilot an integrated picture of the aircraft situation. The display is unique in that it presents the information on a CRT and gives quasi-command signals to the pilot. The particular display investigated was a preproduction version of the Kaiser Model FP-50 flight director. Approaches made with visual references only, with a conventional ILS displacement instrument, and with the CRT display were compared in terms of tracking performance and pilot workload. Tracking performance of three research pilots using the CRT display was superior to that using the conventional ILS instrument and comparable to that under VFR conditions. Pilot workload (based on pilot comments) was not clearly decreased
    corecore