433 research outputs found
The Calibration of the HST Kuiper Belt Object Search: Setting the Record Straight
The limiting magnitude of the HST data set used by Cochran et al. (1995) to
detect small objects in the Kuiper belt is reevaluated, and the methods used
are described in detail. It is shown, by implanting artificial objects in the
original HST images, and re-reducing the images using our original algorithm,
that the limiting magnitude of our images (as defined by the 50% detectability
limit) is . This value is statistically the same as the value found in
the original analysis. We find that of the moving Kuiper belt objects
with are detected when trailing losses are included. In the same data
in which these faint objects are detected, we find that the number of false
detections brighter than is less than one per WFPC2 image. We show
that, primarily due to a zero-point calibration error, but partly due to
inadequacies in modeling the HST'S data noise characteristics and Cochran et
al.'s reduction techniques, Brown et al. 1997 underestimate the SNR of objects
in the HST dataset by over a factor of 2, and their conclusions are therefore
invalid.Comment: Accepted to ApJ Letters; 10 pages plus 3 figures, LaTe
The Resolved Asteroid Program - Size, shape, and pole of (52) Europa
With the adaptive optics (AO) system on the 10 m Keck-II telescope, we
acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa
on 2005 January 20. The epochs covered its rotation period and, by following
its changing shape and orientation on the plane of sky, we obtained its
triaxial ellipsoid dimensions and spin pole location. An independent
determination from images at three epochs obtained in 2007 is in good agreement
with these results. By combining these two data sets, along with a single epoch
data set obtained in 2003, we have derived a global fit for (52) Europa of
diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent
spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA;
Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35).
Using the average of all mass determinations available forEuropa, we derive a
density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with
the shape model of Michalowski et al. (A&A 416, 2004), derived from optical
lightcurves, illustrates excellent agreement, although several edge features
visible in the images are not rendered by the model. We therefore derived a
complete 3-D description of Europa's shape using the KOALA algorithm by
combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We
use this 3-D shape model to assess these departures from ellipsoidal shape.
Flat facets (possible giant craters) appear to be less distinct on (52) Europa
than on other C-types that have been imaged in detail. We show that fewer giant
craters, or smaller craters, is consistent with its expected impact history.
Overall, asteroid (52) Europa is still well modeled as a smooth triaxial
ellipsoid with dimensions constrained by observations obtained over several
apparitions.Comment: Accepted for publication in Icaru
The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia
We seek the best size estimates of the asteroid (21) Lutetia, the direction
of its spin axis, and its bulk density, assuming its shape is well described by
a smooth featureless triaxial ellipsoid, and to evaluate the deviations from
this assumption. Methods. We derive these quantities from the outlines of the
asteroid in 307 images of its resolved apparent disk obtained with adaptive
optics (AO) at Keck II and VLT, and combine these with recent mass
determinations to estimate a bulk density. Our best triaxial ellipsoid
diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101
x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics,
with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or
EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions
of 1 x 1 x 8 km, but it is evident, both from this model derived from limited
viewing aspects and the radius vector model given in a companion paper, that
Lutetia has significant departures from an idealized ellipsoid. In particular,
the long axis may be overestimated from the AO images alone by about 10 km.
Therefore, we combine the best aspects of the radius vector and ellipsoid model
into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x
93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas.
The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC]
= [52, +12]. Using two separately determined masses and the volume of our
hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From
the density evidence alone, we argue that this favors an enstatite-chondrite
composition, although other compositions are formally allowed at the extremes
(low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We
discuss this in the context of other evidence.Comment: 9 pages, 8 figures, 5 tables, submitted to Astronomy and Astrophysic
Results from a Near Infrared Search for Emission-line Stars in the Inner Galaxy: Spectra of New Wolf-Rayet Stars
We present follow-up spectroscopy of emission line candidates detected on
near-infrared narrow band images in the inner Galaxy (Homeier et al. 2003). The
filters are optimized for the detection of Wolf-Rayet stars and other objects
which exhibit emission--lines in the 2 m region. Approximately three
square degrees along the Galactic plane have been analyzed in seven
narrow--filters (four emission--lines and three continuum). We have discovered
4 new Wolf-Rayet stars and present coordinates, finding charts, and K-band
spectra.Comment: To appear in Astronomy & Astrophysic
Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres
We study the physical characteristics (shape, dimensions, spin axis
direction, albedo maps, mineralogy) of the dwarf-planet Ceres based on
high-angular resolution near-infrared observations. We analyze adaptive optics
J/H/K imaging observations of Ceres performed at Keck II Observatory in
September 2002 with an equivalent spatial resolution of ~50 km. The spectral
behavior of the main geological features present on Ceres is compared with
laboratory samples. Ceres' shape can be described by an oblate spheroid (a = b
= 479.7 +/- 2.3 km, c = 444.4 +/- 2.1 km) with EQJ2000.0 spin vector
coordinates RA = 288 +/- 5 deg. and DEC = +66 +/- 5 deg. Ceres sidereal period
is measured to be 9.0741 +/- 0.0001 h. We image surface features with diameters
in the 50-180 km range and an albedo contrast of ~6% with respect to the
average Ceres albedo. The spectral behavior of the brightest regions on Ceres
is consistent with phyllosilicates and carbonate compounds. Darker isolated
regions could be related to the presence of frost.Comment: 11 pages, 8 Postscript figures, Accepted for publication in A&
Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia
We present a comparison of our results from ground-based observations of
asteroid (21) Lutetia with imaging data acquired during the flyby of the
asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity
to evaluate and calibrate our method of determination of size, 3-D shape, and
spin of an asteroid from ground-based observations. We present our 3-D
shape-modeling technique KOALA which is based on multi-dataset inversion. We
compare the results we obtained with KOALA, prior to the flyby, on asteroid
(21) Lutetia with the high-spatial resolution images of the asteroid taken with
the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter
with Lutetia. The spin axis determined with KOALA was found to be accurate to
within two degrees, while the KOALA diameter determinations were within 2% of
the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed
by the spectacular visual agreement between both 3-D shape models (KOALA pre-
and OSIRIS post-flyby). We found a typical deviation of only 2 km at local
scales between the profiles from KOALA predictions and OSIRIS images, resulting
in a volume uncertainty provided by KOALA better than 10%. Radiometric
techniques for the interpretation of thermal infrared data also benefit greatly
from the KOALA shape model: the absolute size and geometric albedo can be
derived with high accuracy, and thermal properties, for example the thermal
inertia, can be determined unambiguously. We consider this to be a validation
of the KOALA method. Because space exploration will remain limited to only a
few objects, KOALA stands as a powerful technique to study a much larger set of
small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry
Aims. We determine the physical properties (spin state and shape) of asteroid
(21) Lutetia, target of the ESA Rosetta mission, to help in preparing for
observations during the flyby on 2010 July 10 by predicting the orientation of
Lutetia as seen from Rosetta.
Methods. We use our novel KOALA inversion algorithm to determine the physical
properties of asteroids from a combination of optical lightcurves,
disk-resolved images, and stellar occultations, although the latter are not
available for (21) Lutetia.
Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of
({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame
(equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved
sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the
southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the
flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on"
and more rectangular as seen "equator-on". The best-fit model suggests the
presence of several concavities. The largest of these is close to the north
pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and
Astrophysic
The effectiveness of a new generation of computerized drug alerts in reducing the risk of injury from drug side effects: a cluster randomized trial
Assessing fitness-to-practice of overseas-trained health practitioners by Australian registration & accreditation bodies
Assessment of fitness-to-practice of health professionals trained overseas and who wish to practice in
Australia is undertaken by a range of organisations. These organisations conduct assessments using a range of
methods. However there is very little published about how these organisations conduct their assessments. The
purpose of the current paper is to investigate the methods of assessment used by these organisations and the
issues associated with conducting these assessments
- …
