727 research outputs found

    A model for information retrieval driven by conceptual spaces

    Get PDF
    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model

    Natural killer (NK) cells and their involvement in different types of cancer. Current status of clinical research

    Get PDF
    Natural killer cells are the main agents of innate immunity. Since 1970, various studies have repeatedly confirmed their involvement in decreasing local tumor growth and also decreasing the risk of metastasis, due to their cytotoxic effects and also through the release of immunostimulatory cytokines such as IFN-gamma. In the 1990s, several studies demonstrated the existence of certain inhibiting and stimulating receptors of these cells, leading to the concept of “induced self”, thus explaining why tumors with MHC-1 are destroyed and autologous cells without it are saved out. Recognition and destruction of tumor cells by the NK cells are the result of complex interactions between inhibiting and activating factors. This paper, based on extensive research of currently available studies, summarizes the mechanisms employed by the NK cells to destroy the cancer cells, thus highlighting their role in the risk of tumor recurrence as well as their use and handling in certain types of immunotherapy

    Statistical-mechanical formulation of Lyapunov exponents

    Full text link
    We show how the Lyapunov exponents of a dynamic system can in general be expressed in terms of the free energy of a (non-Hermitian) quantum many-body problem. This puts their study as a problem of statistical mechanics, whose intuitive concepts and techniques of approximation can hence be borrowed.Comment: 10 pages, 3 figures, RevTex

    Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation

    Full text link
    We report on the uptake, toxicity and degradation of magnetic nanowires by NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron microscopy, we show that after 24 h incubation the wires are internalized by the cells and located either in membrane-bound compartments or dispersed in the cytosol. Using fluorescence microscopy, the membrane-bound compartments were identified as late endosomal/lysosomal endosomes labeled with lysosomal associated membrane protein (Lamp1). Toxicity assays evaluating the mitochondrial activity, cell proliferation and production of reactive oxygen species show that the wires do not display acute short-term (< 100 h) toxicity towards the cells. Interestingly, the cells are able to degrade the wires and to transform them into smaller aggregates, even in short time periods (days). This degradation is likely to occur as a consequence of the internal structure of the wires, which is that of a non-covalently bound aggregate. We anticipate that this degradation should prevent long-term asbestos-like toxicity effects related to high aspect ratio morphologies and that these wires represent a promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure

    Melphalan 140mg/m2 or 200mg/m2 for autologous transplantation in myeloma: results from the Collaboration to Collect Autologous Transplant Outcomes in Lymphoma and Myeloma (CALM) study. A report by the EBMT Chronic Malignancies Working Party

    Get PDF
    Melphalan at a dose of 200mg/m2 is standard conditioning prior to autologous haematopoietic stem cell transplantation for multiple myeloma, but a dose of 140mg/m2 is often used in clinical practice in patients perceived to be at risk of excess toxicity. To determine if melphalan 200 and melphalan 140 are equally effective and tolerable in clinically relevant patient subgroups we analysed 1964 first single autologous transplantation episodes using a series of Cox proportional-hazards models. Overall survival, progression-free survival, cumulative incidence of relapse, non-relapse mortality, haematopoietic recovery and second primary malignancy rates were not significantly different between the melphalan 140 (n=245) and melphalan 200 (n=1719) groups. Multivariable subgroup analysis showed that disease status at transplantation interacted with overall survival, progression-free survival, and cumulative incidence of relapse, with a significant advantage associated with melphalan 200 in patients transplanted in less than partial response (adjusted hazard ratios for melphalan 200 versus melphalan 140: 0.5, 0.54, and 0.56). In contrast, transplantation in very good partial or complete response significantly favoured melphalan 140 for overall survival (adjusted hazard ratio: 2.02). Age, renal function, prior proteasome inhibitor treatment, gender, or Karnofsky score did not interact with overall/progression-free survival or relapse rate in the melphalan dose groups. There were no significant survival or relapse rate differences between melphalan 200 and melphalan 140 patients with high-risk or standard-risk chromosomal abnormalities. In conclusion, remission status at the time of transplantation may favour melphalan 200 or melphalan 140 for key transplant outcomes (NCT01362972)
    corecore