314 research outputs found
Pseudoscalar Conversion and X-rays from the Sun
We investigate the detection of a pseudoscalar that couples
electromagnetically via an interaction . In
particular, we focus on the conversion of pseudoscalars produced in the sun's
interior in the presence of the sun's external magnetic dipole field and
sunspot-related magnetic fields. We find that the sunspot approach is superior.
Measurements by the SXT on the Yohkoh satellite can measure the coupling
constant down to --, provided the
pseudoscalar mass eV, which makes it competitive with
other astrophysical approaches.Comment: 15 pages, RevTex file. Figures available upon request to
[email protected]. (please include full mailing address in
request). Submitted to Physics Letters
Near-Limb Zeeman and Hanle Diagnostics
"Weak" magnetic-field diagnostics in faint objects near the bright solar disk
are discussed in terms of the level of non-object signatures, in particular, of
the stray light in telescopes. Calculated dependencies of the stray light
caused by diffraction at the 0.5-, 1.6-, and 4-meter entrance aperture are
presented. The requirements for micro-roughness of refractive and reflective
primary optics are compared. Several methods for reducing the stray light (the
Lyot coronagraphic technique, multiple stages of apodizing in the focal and
exit pupil planes, apodizing in the entrance aperture plane with a special
mask), and reducing the random and systematic errors are noted. An acceptable
level of stray light in telescopes is estimated for the V-profile recording
with a signal-to-noise ratio greater than three. Prospects for the limb
chromosphere magnetic measurements are indicated.Comment: 11 pages, 3 figure
Scattering polarization of hydrogen lines in the presence of turbulent electric fields
We study the broadband polarization of hydrogen lines produced by scattering
of radiation, in the presence of isotropic electric fields. In this paper, we
focus on two distinct problems: a) the possibility of detecting the presence of
turbulent electric fields by polarimetric methods, and b) the influence of such
fields on the polarization due to a macroscopic, deterministic magnetic field.
We found that isotropic electric fields decrease the degree of linear
polarization in the scattered radiation, with respect to the zero-field case.
On the other hand, a distribution of isotropic electric fields superimposed
onto a deterministic magnetic field can generate a significant increase of the
degree of magnetic-induced, net circular polarization. This phenomenon has
important implications for the diagnostics of magnetic fields in plasmas using
hydrogen lines, because of the ubiquitous presence of the Holtsmark,
microscopic electric field from neighbouring ions. In particular, previous
solar magnetographic studies of the Balmer lines of hydrogen may need to be
revised because they neglected the effect of turbulent electric fields on the
polarization signals. In this work, we give explicit results for the
Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure
A new approach to analyzing solar coronal spectra and updated collisional ionization equilibrium calculations. II. Additional ionization rate coefficients
We have reanalyzed SUMER observations of a parcel of coronal gas using new
collisional ionization equilibrium (CIE) calculations. These improved CIE
fractional abundances were calculated using state-of-the-art electron-ion
recombination data for K-shell, L-shell, Na-like, and Mg-like ions of all
elements from H through Zn and, additionally, Al- through Ar-like ions of Fe.
They also incorporate the latest recommended electron impact ionization data
for all ions of H through Zn. Improved CIE calculations based on these
recombination and ionization data are presented here. We have also developed a
new systematic method for determining the average emission measure () and
electron temperature () of an isothermal plasma. With our new CIE data and
our new approach for determining average and , we have reanalyzed
SUMER observations of the solar corona. We have compared our results with those
of previous studies and found some significant differences for the derived
and . We have also calculated the enhancement of coronal elemental
abundances compared to their photospheric abundances, using the SUMER
observations themselves to determine the abundance enhancement factor for each
of the emitting elements. Our observationally derived first ionization
potential (FIP) factors are in reasonable agreement with the theoretical model
of Laming (2008).Comment: 147 pages (102 of which are online only tables and figures).
Submitted to ApJ. Version 2 is updated addressing the referee's repor
Recommended from our members
Estimating survival in patients with gastrointestinal cancers and brain metastases: An update of the graded prognostic assessment for gastrointestinal cancers (GI-GPA).
BackgroundPatients with gastrointestinal cancers and brain metastases (BM) represent a unique and heterogeneous population. Our group previously published the Diagnosis-Specific Graded Prognostic Assessment (DS-GPA) for patients with GI cancers (GI-GPA) (1985-2007, n = 209). The purpose of this study is to update the GI-GPA based on a larger contemporary database.MethodsAn IRB-approved consortium database analysis was performed using a multi-institutional (18), multi-national (3) cohort of 792 patients with gastrointestinal (GI) cancers, with newly-diagnosed BM diagnosed between 1/1/2006 and 12/31/2017. Survival was measured from date of first treatment for BM. Multiple Cox regression was used to select and weight prognostic factors in proportion to their hazard ratios. These factors were incorporated into the updated GI-GPA.ResultsMedian survival (MS) varied widely by primary site and other prognostic factors. Four significant factors (KPS, age, extracranial metastases and number of BM) were used to formulate the updated GI-GPA. Overall MS for this cohort remains poor; 8 months. MS by GPA was 3, 7, 11 and 17 months for GPA 0-1, 1.5-2, 2.5-3.0 and 3.5-4.0, respectively. >30% present in the worst prognostic group (GI-GPA of ≤1.0).ConclusionsBrain metastases are not uncommon in GI cancer patients and MS varies widely among them. This updated GI-GPA index improves our ability to estimate survival for these patients and will be useful for therapy selection, end-of-life decision-making and stratification for future clinical trials. A user-friendly, free, on-line app to calculate the GPA score and estimate survival for an individual patient is available at brainmetgpa.com
Episodic X-ray Emission Accompanying the Activation of an Eruptive Prominence: Evidence of Episodic Magnetic Reconnection
We present an X-ray imaging and spectroscopic study of a partially occulted
C7.7 flare on 2003 April 24 observed by RHESSI that accompanied a prominence
eruption observed by TRACE. (1) The activation and rise of the prominence
occurs during the preheating phase of the flare. The initial X-ray emission
appears as a single coronal source at one leg of the prominence and it then
splits into a double source. Such a source splitting happens three times, each
coinciding with an increased X-ray flux and plasma temperature, suggestive of
fast reconnection in a localized current sheet and an enhanced energy release
rate. In the late stage of this phase, the prominence displays a helical
structure. These observations are consistent with the tether-cutting and/or
kink instability model for triggering solar eruptions. (2) The eruption of the
prominence takes place during the flare impulsive phase. Since then, there
appear signatures predicted by the classical CSHKP model of two-ribbon flares
occurring in a vertical current sheet trailing an eruption. These signatures
include an EUV cusp and current-sheet-like feature (or ridge) above it. There
is also X-ray emission along the EUV ridge both below and above the cusp, which
in both regions appears closer to the cusp at higher energies in the thermal
regime. This trend is reversed in the nonthermal regime. (3) Spectral analysis
indicates thermal X-rays from all sources throughout the flare, while during
the impulsive phase there is additional nonthermal emission which primarily
comes from the coronal source below the cusp. This source also has a lower
temperature, a higher emission measure, and a much harder nonthermal spectrum
than the upper sources.Comment: 8 pages, 5 figures, submitted to Ap
Damping mechanisms for oscillations in solar prominences
Small amplitude oscillations are a commonly observed feature in
prominences/filaments. These oscillations appear to be of local nature, are
associated to the fine structure of prominence plasmas, and simultaneous flows
and counterflows are also present. The existing observational evidence reveals
that small amplitude oscillations, after excited, are damped in short spatial
and temporal scales by some as yet not well determined physical mechanism(s).
Commonly, these oscillations have been interpreted in terms of linear
magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping
mechanisms that have been recently put forward in order to explain the observed
attenuation scales. These mechanisms include thermal effects, through
non-adiabatic processes, mass flows, resonant damping in non-uniform media, and
partial ionization effects. The relevance of each mechanism is assessed by
comparing the spatial and time scales produced by each of them with those
obtained from observations. Also, the application of the latest theoretical
results to perform prominence seismology is discussed, aiming to determine
physical parameters in prominence plasmas that are difficult to measure by
direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted
Recommended from our members
Variations in Multiple Birth Rates and Impact on Perinatal Outcomes in Europe
Objective
Infants from multiple pregnancies have higher rates of preterm birth, stillbirth and neonatal death and differences in multiple birth rates (MBR) exist between countries. We aimed to describe differences in MBR in Europe and to investigate the impact of these differences on adverse perinatal outcomes at a population level.
Methods
We used national aggregate birth data on multiple pregnancies, maternal age, gestational age (GA), stillbirth and neonatal death collected in the Euro-Peristat project (29 countries in 2010, N = 5 074 643 births). We also used European Society of Human Reproduction and Embryology (ESHRE) data on assisted conception and single embryo transfer (SET). The impact of MBR on outcomes was studied using meta-analysis techniques with random-effects models to derive pooled risk ratios (pRR) overall and for four groups of country defined by their MBR. We computed population attributable risks (PAR) for these groups.
Results
In 2010, the average MBR was 16.8 per 1000 women giving birth, ranging from 9.1 (Romania) to 26.5 (Cyprus). Compared to singletons, multiples had a nine-fold increased risk (pRR 9.4, 95% Cl 9.1–9.8) of preterm birth (<37 weeks GA), an almost 12-fold increased risk (pRR 11.7, 95% CI 11.0–12.4) of very preterm birth (<32 weeks GA). Pooled RR were 2.4 (95% Cl 1.5–3.6) for fetal mortality at or after 28 weeks GA and 7.0 (95% Cl 6.1–8.0) for neonatal mortality. PAR of neonatal death and very preterm birth were higher in countries with high MBR compared to low MBR (17.1% (95% CI 13.8–20.2) versus 9.8% (95% Cl 9.6–11.0) for neonatal death and 29.6% (96% CI 28.5–30.6) versus 17.5% (95% CI 15.7–18.3) for very preterm births, respectively).
Conclusions
Wide variations in MBR and their impact on population outcomes imply that efforts by countries to reduce MBR could improve perinatal outcomes, enabling better long-term child health
Complex sublinear burrows in the deep sea may be constructed by amphipods
Trails, burrows, and other “life traces” in sediment provide important evidence for understanding ecology—both of the maker and of other users—and behavioral information often lacking in inaccessible ecosystems, such as the deep sea or those that are already extinct. Here, we report novel sublinear rows of openings in the abyssal plains of the North Pacific, and the first plausible hypothesis for a maker of these constructions. Enigmatic serial burrows have now been recorded in the Pacific and Atlantic deep sea. Based on image and specimen evidence, we propose that these Bering Sea excavations represent amphipod burrows, while the maker of the previously known Mid-Atlantic Ridge constructions remains undetermined. We propose that maerid amphipods could create the Pacific burrows by eating–digging horizontally below the surface along a nutrient-rich layer in the sediment, making the serial openings above them as they go, for conveniently removing excavated sediment as the excavation progresses. These striking structures contribute to local biodiversity, and their maker could be considered a deep-sea ecosystem engineer.publishedVersio
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
- …
