4 research outputs found

    Directed percolation near a wall

    Full text link
    Series expansion methods are used to study directed bond percolation clusters on the square lattice whose lateral growth is restricted by a wall parallel to the growth direction. The percolation threshold pcp_c is found to be the same as that for the bulk. However the values of the critical exponents for the percolation probability and mean cluster size are quite different from those for the bulk and are estimated by β1=0.7338±0.0001\beta_1 = 0.7338 \pm 0.0001 and γ1=1.8207±0.0004\gamma_1 = 1.8207 \pm 0.0004 respectively. On the other hand the exponent Δ1=β1+γ1\Delta_1=\beta_1 +\gamma_1 characterising the scale of the cluster size distribution is found to be unchanged by the presence of the wall. The parallel connectedness length, which is the scale for the cluster length distribution, has an exponent which we estimate to be ν1=1.7337±0.0004\nu_{1\parallel} = 1.7337 \pm 0.0004 and is also unchanged. The exponent τ1\tau_1 of the mean cluster length is related to β1\beta_1 and ν1\nu_{1\parallel} by the scaling relation ν1=β1+τ1\nu_{1\parallel} = \beta_1 + \tau_1 and using the above estimates yields τ1=1\tau_1 = 1 to within the accuracy of our results. We conjecture that this value of τ1\tau_1 is exact and further support for the conjecture is provided by the direct series expansion estimate τ1=1.0002±0.0003\tau_1= 1.0002 \pm 0.0003.Comment: 12pages LaTeX, ioplppt.sty, to appear in J. Phys.

    The exact evaluation of the corner-to-corner resistance of an M x N resistor network: Asymptotic expansion

    Get PDF
    We study the corner-to-corner resistance of an M x N resistor network with resistors r and s in the two spatial directions, and obtain an asymptotic expansion of its exact expression for large M and N. For M = N, r = s =1, our result is R_{NxN} = (4/pi) log N + 0.077318 + 0.266070/N^2 - 0.534779/N^4 + O(1/N^6).Comment: 12 pages, re-arranged section

    Directed Compact Percolation II: Nodal Points, Mass Distribution, and Scaling

    No full text
    Directed compact percolation is a limiting case of a cellular automaton model which also includes directed site and bond percolation. Existing results for the latter are reviewed and previous calculations for compact percolation are extended so that comparison of several critical exponents may be made. New results are obtained for the probability distribution of the number of nodal points and for the centre of mass and moments of inertia of compact percolation clusters. Also for this model scaling is verified for the cluster size distribution and for the longitudinal moments of the pair connectedness
    corecore