157 research outputs found
Bits Through Bufferless Queues
This paper investigates the capacity of a channel in which information is
conveyed by the timing of consecutive packets passing through a queue with
independent and identically distributed service times. Such timing channels are
commonly studied under the assumption of a work-conserving queue. In contrast,
this paper studies the case of a bufferless queue that drops arriving packets
while a packet is in service. Under this bufferless model, the paper provides
upper bounds on the capacity of timing channels and establishes achievable
rates for the case of bufferless M/M/1 and M/G/1 queues. In particular, it is
shown that a bufferless M/M/1 queue at worst suffers less than 10% reduction in
capacity when compared to an M/M/1 work-conserving queue.Comment: 8 pages, 3 figures, accepted in 51st Annual Allerton Conference on
Communication, Control, and Computing, University of Illinois, Monticello,
Illinois, Oct 2-4, 201
Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations
Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains
In this paper we present results of large-scale correlated calculations of
triplet photoinduced absorption (PA) spectrum of oligomers of
poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In
particular, the high-energy features in the triplet PA spectrum of oligo-PPVs
are the focus of this study, which, so far, have not been investigated
theoretically, or experimentally. The calculations were performed using the
Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken
into account by means of multi-reference singles-doubles configuration
interaction procedure (MRSDCI), without neglecting any molecular orbitals. The
computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting
of alternating peaks of high and low intensities. The predicted higher energy
features of the triplet spectrum can be tested in future experiments.
Additionally, theoretical estimates of exciton binding energy are also
presented.Comment: To appear in Phys. Rev.
Wolff's Theorem on Ideals for Matrices
We extend Wolff's theorem concerning ideals on H-infinity(D) to the matrix
case, giving conditions under which an H-infinity solution G to the equation FG
= H exists for all z in D, where F is an m-by-infinity matrix of functions in
H-infinity (D), and H is an m-by-1 vector of such functions. We then examine
several useful results
Electron correlation effects in electron-hole recombination in organic light-emitting diodes
We develop a general theory of electron--hole recombination in organic light
emitting diodes that leads to formation of emissive singlet excitons and
nonemissive triplet excitons. We briefly review other existing theories and
show how our approach is substantively different from these theories. Using an
exact time-dependent approach to the interchain/intermolecular charge-transfer
within a long-range interacting model we find that, (i) the relative yield of
the singlet exciton in polymers is considerably larger than the 25% predicted
from statistical considerations, (ii) the singlet exciton yield increases with
chain length in oligomers, and, (iii) in small molecules containing nitrogen
heteroatoms, the relative yield of the singlet exciton is considerably smaller
and may be even close to 25%. The above results are independent of whether or
not the bond-charge repulsion, X_perp, is included in the interchain part of
the Hamiltonian for the two-chain system. The larger (smaller) yield of the
singlet (triplet) exciton in carbon-based long-chain polymers is a consequence
of both its ionic (covalent) nature and smaller (larger) binding energy. In
nitrogen containing monomers, wavefunctions are closer to the noninteracting
limit, and this decreases (increases) the relative yield of the singlet
(triplet) exciton. Our results are in qualitative agreement with
electroluminescence experiments involving both molecular and polymeric light
emitters. The time-dependent approach developed here for describing
intermolecular charge-transfer processes is completely general and may be
applied to many other such processes.Comment: 19 pages, 11 figure
Theory of excited state absorptions in phenylene-based -conjugated polymers
Within a rigid-band correlated electron model for oligomers of
poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that
there exist two fundamentally different classes of two-photon A states in
these systems to which photoinduced absorption (PA) can occur. At relatively
lower energies there occur A states which are superpositions of one
electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations,
that are both comprised of the highest delocalized valence band and the lowest
delocalized conduction band states only. The dominant PA is to one specific
member of this class of states (the mA). In addition to the above class of
A states, PA can also occur to a higher energy kA state whose 2e--2h
component is {\em different} and has significant contributions from excitations
involving both delocalized and localized bands. Our calculated scaled energies
of the mA and the kA agree reasonably well to the experimentally
observed low and high energy PAs in PPV. The calculated relative intensities of
the two PAs are also in qualitative agreement with experiment. In the case of
ladder-type PPP and its oligomers, we predict from our theoretical work a new
intense PA at an energy considerably lower than the region where PA have been
observed currently. Based on earlier work that showed that efficient
charge--carrier generation occurs upon excitation to odd--parity states that
involve both delocalized and localized bands, we speculate that it is the
characteristic electronic nature of the kA that leads to charge generation
subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page
An investigation of the design and implementation of cross talk cancellation filters for virtual acoustic imaging
The nature of singlet exciton fission in carotenoid aggregates.
Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.This work was supported by the EPSRC (UK) (EP/G060738/
1), the European Community (LASERLAB-EUROPE, grant
agreement no. 284464, EC’s Seventh Framework Programme;
and Marie-Curie ITN-SUPERIOR, PITN-GA-2009-238177),
and the Winton Programme for the Physics of Sustainability.
G.C. acknowledges support by the European Research Council
Advanced Grant STRATUS (ERC-2011-AdG No. 291198).
J.C. acknowledges support by the Royal Society Dorothy
Hodgkin Fellowship and The University of Sheffield’s Vice-
Chancellor’s Fellowship scheme.This is the final published version. It was first made available by ACS at http://pubs.acs.org/doi/abs/10.1021/jacs.5b01130
Biofortification of kale microgreens with selenate-selenium using two delivery methods: Selenium-rich soilless medium and foliar application
Selenium (Se) is essential for human health as it is involved in various fundamental biological functions. This study aimed to assess the effects of Se enrichment in kale microgreens through biofortification in a soilless cultivation system. Two Se (as sodium selenate) application methods were assessed, including supplementation into the nutrient solution or as a foliar spray at four concentrations: 0, 10, 20 and 40 µM Se in a completely randomized design considering triplicates. For this purpose, minerals, nitrate and ammonium content, as well as fresh yield and dry matter of kale microgreens, were recorded after a 14-day growing period in an environmentally controlled vertical farm. Results showed that kale microgreens successfully accumulated up to 893.3 and 24 µg Se/ kg dry matter under the nutrient solution and foliar treatments, respectively, while yield remained unaffected. Selenium (Se) enrichment of the nutrient solution at 20 µM Se concentration resulted in the optimum treatment for fresh consumption purposes and supplying this element in human diets in the future, providing adequate dietary Se in less than five grams of the fresh kale microgreens.fals
Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations
- …
