100 research outputs found
Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines
BACKGROUND: Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. METHODS: To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. RESULTS: Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. CONCLUSION: We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms
Surprisingly Simple Mechanical Behavior of a Complex Embryonic Tissue
Background: Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos. Methodology/Principal Findings: We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo. Conclusions/Significance: The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics. © 2010 von Dassow et al
Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte
Elastic and Viscoelastic Characterization of Mouse Oocytes Using Micropipette Indentation
Euclid: I. Overview of the Euclid mission
The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients,dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015–2025 programme of theEuropean Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy,over about 14 000 deg² of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structureformation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range ofscience. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processingsteps, and data products. We also highlight the main science objectives and expected performance
Rat liver injury following normothermic ischemia is prevented by a phosphinic matrix metalloproteinase inhibitor
An Application of the Micropipette Technique to the Measurement of the Mechanical Properties of Cultured Bovine Aortic Endothelial Cells,"
Introduction The growth and behavior of the endothelial lining of a blood vessel are strongly influenced by mechanical and hemodynamic forces Recently, the influence of flow on endothelial structure and function has been studied using cultured endothelial cell
- …
