964 research outputs found
Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model
A mechanism of point defect migration triggered by local depolarization
fields is shown to explain some still inexplicable features of aging in
acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged
defect transport and electrostatic field relaxation within a two-dimensional
domain configuration is treated numerically and analytically. Numerical results
are given for the emerging internal bias field of about 1 kV/mm which levels
off at dopant concentrations well below 1 mol%; the fact, long ago known
experimentally but still not explained. For higher defect concentrations a
closed solution of the model equations in the drift approximation as well as an
explicit formula for the internal bias field is derived revealing the plausible
time, temperature and concentration dependencies of aging. The results are
compared to those due to the mechanism of orientational reordering of defect
dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review
Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries
Migration of charged point defects triggered by the local random
depolarization field is shown to plausibly explain aging of poled ferroelectric
ceramics providing reasonable time and acceptor concentration dependences of
the emerging internal bias field. The theory is based on the evaluation of the
energy of the local depolarization field caused by mismatch of the
polarizations of neighbor grains. The kinetics of charge migration assumes
presence of mobile oxygen vacancies in the material due to the intentional or
unintentional acceptor doping. Satisfactory agreement of the theory with
experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure
Dissociative paraplegia after epidural anesthesia: A case report
10.1186/1752-1947-7-56Journal of Medical Case Reports7
Innovacion para valorar la biodiversidad de las papas nativas: El caso de Papa Andina/INCOPA en el Peru.
Innovation to assess the biodiversity of indigenous potatoes: The case of the Andean Potato/INCOPA in Peru.
Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver
We report on the measurement of the frequency noise properties of a 4.6-μm distributed-feedback quantum-cascade laser (QCL) operating in continuous wave near room temperature using a spectroscopic set-up. The flank of the R(14) ro-vibrational absorption line of carbon monoxide at 2196.6cm−1 is used to convert the frequency fluctuations of the laser into intensity fluctuations that are spectrally analyzed. We evaluate the influence of the laser driver on the observed QCL frequency noise and show how only a low-noise driver with a current noise density below {\approx} 1~\mbox{nA/}\sqrt{}\mbox{Hz} allows observing the frequency noise of the laser itself, without any degradation induced by the current source. We also show how the laser FWHM linewidth, extracted from the frequency noise spectrum using a simple formula, can be drastically broadened at a rate of {\approx} 1.6~\mbox{MHz/}(\mbox{nA/}\sqrt{}\mbox{Hz}) for higher current noise densities of the driver. The current noise of commercial QCL drivers can reach several \mbox{nA/}\sqrt{}\mbox{Hz} , leading to a broadening of the linewidth of our QCL of up to several megahertz. To remedy this limitation, we present a low-noise QCL driver with only 350~\mbox{pA/}\sqrt{}\mbox{Hz} current noise, which is suitable to observe the ≈550kHz linewidth of our QC
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
- …
