11,051 research outputs found

    Measurements of the backscattering characteristics of suspensions having a broad particle size distribution

    Get PDF
    Acoustic backscatter systems (ABS) can be used to non-intrusively measure profiles of both the concentration and particle size of suspended sediments in the marine environment. Inversion of ABS measurements into sediment size and concentration requires knowledge of two scattering parameters, namely the total normalised scattering cross-section, &chi;, and the form function, f. &chi; quantifies the acoustical scattering by a given particle over all angles, relative to its cross sectional area, and represents attenuation due to particle scattering losses. f describes the backscattering characteristics of a particle relative to its geometrical size. In recent years, a number of studies have presented measurements of f and &chi; for populations of sediments sieved over narrow size ranges, thereby essentially providing values for nominally a single particle size in suspension. In the present study, we extend these works by looking at the impact that a broad particle size distribution has on the form of f and &chi;. Here we model and measure the average form function for a broad size distribution (&sigma; = ±0.35a0, where &sigma; is the standard deviation about the mean particle radius, a0) of suspended glass spheres, whose scattering characteristics are well documented. The model is in close agreement with the provisional measurements, and suggests that for populations of suspended glass spheres with broad size distributions, the form function increases by about 40% in the Rayleigh regime (&lambda; >> 2&pi;a0, where &lambda; is the wavelength of the sound in water), whilst decreasing by a factor of around 25% in the geometric regime (&lambda; << 2&pi;a0), relative to that obtained for populations with a nominally single size in suspension. The output from this work has direct implications for the calculation of particle size and concentration profiles, obtained from acoustic backscatter data collected on suspensions of marine sediments at sea

    Measurements of the scattering characteristics of sediment suspensions with different mineralogical compositions

    Get PDF
    Acoustic studies of suspended sediments often assume the dominant mineral in suspension is quartz, the density and intrinsic scattering properties of which are implemented when inverting acoustic backscatter data collected at sea. However, compositional analysis studies of suspended and sea-bed particulate material show a wide range of mineral species contribute to the inorganic fraction of sediments in the marine environment. Whilst no theoretical framework exists to predict the acoustic properties of irregularly shaped sediment grains, the density, compressional, and shear wave velocities of common marine mineral species can vary by up to a factor of two. In this study, we present and compare measurements of the intrinsic scattering parameters, namely the normalized total scattering cross section, χ, and the backscatter form function, f, obtained from homogenous suspensions of irregularly shaped sand sized grains of both magnetite and quartz. Our preliminary measurements suggest that in the geometric scattering regime, χ is enhanced for magnetite sands by ~ 100 % relative to quartz. Similarly, measurements of the form function for magnetite sands are enhanced by ~ 33 % relative to quartz in the geometric regime, though no measurable difference was observed in the Rayleigh regime. The implications of these results for acoustic backscatter data collected at sea are discussed

    Minimal hepatic toxicity of Onyx-015: spatial restriction of coxsackie-adenoviral receptor in normal liver.

    Get PDF
    We administered an adenoviral vector, Onyx-015, into the hepatic artery of patients with metastatic colorectal cancer involving the liver. Thirty-five patients enrolled in this multi-institutional phase I/II trial received up to eight arterial infusions of up to 2 x 10(12) viral particles. Hepatic toxicity was the primary dose-limiting toxicity observed in preclinical models. However, nearly 200 infusions of this adenoviral vector were administered directly into the hepatic artery without significant toxicity. Therefore, we undertook this analysis to determine the impact of repeated adenoviral exposure on hepatic function. Seventeen patients were treated at our institution, providing a detailed data set on the changes in hepatic function following repeated exposure to adenovirus. No changes in hepatic function occurred with the first treatment of Onyx-015 among these patients. Transient increases in transaminase levels occurred in one patient starting with the second infusion and transient increases in bilirubin was observed in two patients starting with the fifth treatment. These changes occurred too early to be explained by viral-mediated lysis of hepatocytes. In addition, viremia was observed starting 3-5 days after the viral infusion in half of the patient, but was not associated with hepatic toxicity. To further understand the basis for the minimal hepatic toxicity of adenoviral vectors, we evaluated the replication of adenovirus in primary hepatocytes and tumor cells in culture and the expression of the coxsackie-adenoviral receptor (CAR) in normal liver and colon cancer metastatic to the liver. We found that adenovirus replicates poorly in primary hepatocytes but replicates efficiently in tumors including tumors derived from hepatocytes. In addition, we found that CAR is localized at junctions between hepatocytes and is inaccessible to hepatic blood flow. CAR is not expressed on tumor vasculature but is expressed on tumor cells. Spatial restriction of CAR to the intercellular space in normal liver and diminished replication of adenovirus in hepatocytes may explain the minimal toxicity observed following repeated hepatic artery infusions with Onyx-015

    Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma

    Full text link
    We study the conductivity and shear viscosity tensors of a strongly coupled N=4 super-Yang-Mills plasma which is kept anisotropic by a theta parameter that depends linearly on one of the spatial dimensions. Its holographic dual is given by an anisotropic axion-dilaton-gravity background and has recently been proposed by Mateos and Trancanelli as a model for the pre-equilibrium stage of quark-gluon plasma in heavy-ion collisions. By applying the membrane paradigm which we also check by numerical evaluation of Kubo formula and lowest lying quasinormal modes, we find that the shear viscosity purely transverse to the direction of anisotropy saturates the holographic viscosity bound, whereas longitudinal shear viscosities are smaller, providing the first such example not involving higher-derivative theories of gravity and, more importantly, with fully known gauge-gravity correspondence.Comment: 4 pages, 2 figures; v3: references added, version to appear in Phys. Rev. Let

    Inclusion of new LHC data in MMHT PDFs

    Get PDF
    I consider the effects of including a variety of new LHC data sets into the MMHT approach for PDF determination. I consider the impact of fitting new LHC and Tevatron data, which leads to clear improvements in some PDF uncertainties. There are specific issues with ATLAS 7 TeV jet data and I include a discussion of the treatment of correlated uncertainties and briefly the effects of NNLO corrections. I also present preliminary results with the inclusion of the high precison final ATLAS 7 TeV W,ZW,Z rapidity-dependent data.Comment: 6 pages. To appear in proceedings of DIS2017 Worksho

    Weyl corrections to holographic conductivity

    Full text link
    For conformal field theories which admit a dual gravitational description in anti-de Sitter space, electrical transport properties, such as conductivity and charge diffusion, are determined by the dynamics of a U(1) gauge field in the bulk and thus obey universality relations at the classical level due to the uniqueness of the Maxwell action. We analyze corrections to these transport parameters due to higher-dimension operators in the bulk action, beyond the leading Maxwell term, of which the most significant involves a coupling to the bulk Weyl tensor. We show that the ensuing corrections to conductivity and the diffusion constant break the universal relation with the U(1) central charge observed at leading order, but are nonetheless subject to interesting bounds associated with causality in the boundary CFT.Comment: 15 pages, v2: references adde

    Renormalizability of Effective Scalar Field Theory

    Full text link
    We present a comprehensive discussion of the consistency of the effective quantum field theory of a single Z2Z_2 symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory are actually equivalent. All this is achieved by a systematic exploitation of Wilson's exact renormalization group flow equation, as used by Polchinski in his original proof of the renormalizability of conventional φ4\varphi^4-theory.Comment: 80 pages, TeX, OUTP-93-23P, CERN-TH.7067/93. Many minor revisions, and several new paragraph

    Hydromagnetic and gravitomagnetic crust-core coupling in a precessing neutron star

    Full text link
    We consider two types of mechanical coupling between the crust and the core of a precessing neutron star. First, we find that a hydromagnetic (MHD) coupling between the crust and the core strongly modifies the star's precessional modes when ta(Ts×Tp)1/2t_a\le\sim (T_s\times T_p)^{1/2}; here tat_a is the Alfven crossing timescale, and TsT_s and TpT_p are the star's spin and precession periods, respectively. We argue that in a precessing pulsar PSR B1828-11 the restoring MHD stress prevents a free wobble of the crust relative to the non-precessing core. Instead, the crust and the proton-electron plasma in the core must precess in unison, and their combined ellipticity determines the period of precession. Link has recently shown that the neutron superfluid vortices in the core of PSR B1828-11 cannot be pinned to the plasma; he has also argued that this lack of pinning is expected if the proton Fermi liquid in the core is type-I superconductor. In this case, the neutron superfluid is dynamically decoupled from the precessing motion. The pulsar's precession decays due to the mutual friction between the neutron superfluid and the plasma in the core. The decay is expected to occur over tens to hundreds of precession periods and may be measurable over a human lifetime. Such a measurement would provide information about the strong n-p interaction in the neutron-star core. Second, we consider the effect of gravitomagnetic coupling between the neutron superfluid in the core and the rest of the star and show that this coupling changes the rate of precession by about 10%. The general formalism developed in this paper may be useful for other applications.Comment: 6 page

    On the structure of line-driven winds near black holes

    Full text link
    A general physical mechanism of the formation of line-driven winds at the vicinity of strong gravitational field sources is investigated in the frame of General Relativity. We argue that gravitational redshifting should be taken into account to model such outflows. The generalization of the Sobolev approximation in the frame of General Relativity is presented. We consider all processes in the metric of a nonrotating (Schwarzschild) black hole. The radiation force that is due to absorbtion of the radiation flux in lines is derived. It is demonstrated that if gravitational redshifting is taken into account, the radiation force becomes a function of the local velocity gradient (as in the standard line-driven wind theory) and the gradient of g00g_{00}. We derive a general relativistic equation of motion describing such flow. A solution of the equation of motion is obtained and confronted with that obtained from the Castor, Abbott & Klein (CAK) theory. It is shown that the proposed mechanism could have an important contribution to the formation of line-driven outflows from compact objects.Comment: 20 pages, submitted to Ap
    corecore