452 research outputs found

    Model wall and recovery temperature effects on experimental heat transfer data analysis

    Get PDF
    Basic analytical procedures are used to illustrate, both qualitatively and quantitatively, the relative impact upon heat transfer data analysis of certain factors which may affect the accuracy of experimental heat transfer data. Inaccurate knowledge of adiabatic wall conditions results in a corresponding inaccuracy in the measured heat transfer coefficient. The magnitude of the resulting error is extreme for data obtained at wall temperatures approaching the adiabatic condition. High model wall temperatures and wall temperature gradients affect the level and distribution of heat transfer to an experimental model. The significance of each of these factors is examined and its impact upon heat transfer data analysis is assessed

    Copyright Revision: Preemption as a Panacea

    Get PDF

    Orbiter catalytic/noncatalytic heat transfer as evidenced by heating to contaminated surfaces on STS-2 and STS-3

    Get PDF
    During that portion of Space Shuttle orbiter entry when significant aerodynamic heat transfer occurs, the flow over the vehicle is in chemical nonequilibrium. The parameter which most significantly influences the level of surface heat transfer in such a flow field is the catalytic efficiency of the surface with respect to the recombination of dissociated oxygen atoms. Significant, and instantaneous, changes were observed in the level of heat transfer at several lower surface centerline locations on STS-2 and STS-3. This phenomenon apparently resulted from a sudden change in the surface catalytic efficiency at these locations due to contamination of the surface by metallic oxides. As a result, data obtained from affected measurements cannot be considered as benchmark data with which to attempt to characterize nonequilibrium heat transfer to the orbiter's lower surface centerline

    An experimental investigation of heat transfer to reusable surface insulation tile array gaps in a turbulent boundary layer with pressure gradient

    Get PDF
    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed

    Effect of a surface-to-gap temperature discontinuity on the heat transfer to reusable surface insulation tile gaps

    Get PDF
    An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number

    Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps

    Get PDF
    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap

    Earliest hominin cancer: 1.7-million-year old osteosarcoma from Swartkrans Cave, South Africa

    Get PDF
    The reported incidence of neoplasia in the extinct human lineage is rare, with only a few confirmed cases of Middle or Later Pleistocene dates reported. It has generally been assumed that premodern incidence of neoplastic disease of any kind is rare and limited to benign conditions, but new fossil evidence suggests otherwise. We here present the earliest identifiable case of malignant neoplastic disease from an early human ancestor dated to 1.8–1.6 million years old. The diagnosis has been made possible only by advances in 3D imaging methods as diagnostic aids. We present a case report based on re-analysis of a hominin metatarsal specimen (SK 7923) from the cave site of Swartkrans in the Cradle of Humankind, South Africa. The expression of malignant osteosarcoma in the Swartkrans specimen indicates that whilst the upsurge in malignancy incidence is correlated with modern lifestyles, there is no reason to suspect that primary bone tumours would have been any less frequent in ancient specimens. Such tumours are not related to lifestyle and often occur in younger individuals. As such, malignancy has a considerable antiquity in the fossil record, as evidenced by this specimen

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe
    corecore