237 research outputs found

    End-User Probabilistic Programming

    Get PDF
    Probabilistic programming aims to help users make decisions under uncertainty. The user writes code representing a probabilistic model, and receives outcomes as distributions or summary statistics. We consider probabilistic programming for end-users, in particular spreadsheet users, estimated to number in tens to hundreds of millions. We examine the sources of uncertainty actually encountered by spreadsheet users, and their coping mechanisms, via an interview study. We examine spreadsheet-based interfaces and technology to help reason under uncertainty, via probabilistic and other means. We show how uncertain values can propagate uncertainty through spreadsheets, and how sheet-defined functions can be applied to handle uncertainty. Hence, we draw conclusions about the promise and limitations of probabilistic programming for end-users

    Cost analysis of nondeterministic probabilistic programs

    Get PDF
    We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well. In this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework. Moreover, our approach leads to an efficient polynomial-time algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach using experimental results on a variety of programs for which we efficiently synthesize tight resource-usage bounds

    Cost Analysis of Nondeterministic Probabilistic Programs

    Get PDF
    We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well. In this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework. Moreover, our approach leads to an efficient polynomial-time algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach by presenting experimental results on a variety of programs, motivated by real-world applications, for which we efficiently synthesize tight resource-usage bounds.Comment: A conference version will appear in the 40th ACM Conference on Programming Language Design and Implementation (PLDI 2019

    Semimyopic Measurement Selection for Optimization Under Uncertainty

    No full text

    “If the Odds Are a Million to One Against Something Occurring, Chances Are 50–50 It Will”*

    Full text link
    corecore