30,027 research outputs found

    Technique for calibrating angular measurement devices when calibration standards are unavailable

    Get PDF
    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined

    \u3ci\u3eLibellula Flavida\u3c/i\u3e (Odonata: Libellulidae), a Dragonfly New to Ohio

    Get PDF
    Libellula flavida, a widespread but uncommon dragonfly of southeastern and south central North America, is now recorded from Ohio. A breeding population was discovered in an acidic fen on the site of a sandstone quarry in southern Ohio

    Dynamic mimicry in an Indo-Malayan octopus

    Get PDF
    During research dives in Indonesia (Sulawesi and Bali), we filmed a distinctive long-armed octopus, which is new to science. Diving over 24 h periods revealed that the 'mimic octopus' emerges during daylight hours to forage on sand substrates in full view of pelagic fish predators. We observed nine individuals of this species displaying a repertoire of postures and body patterns, several of which are clearly impersonations of venomous animals co-occurring in this habitat. This 'dynamic mimicry' avoids the genetic constraints that may limit the diversity of genetically polymorphic mimics but has the same effect of decreasing the frequency with which predators encounter particular mimics. Additionally, our observations suggest that the octopus makes decisions about the most appropriate form of mimicry to use, allowing it to enhance further the benefits of mimicking toxic models by employing mimicry according to the nature of perceived threats

    PDE models of adder mechanisms in cellular proliferation

    Get PDF
    Cell division is a process that involves many biochemical steps and complex biophysical mechanisms. To simplify the understanding of what triggers cell division, three basic models that subsume more microscopic cellular processes associated with cell division have been proposed. Cells can divide based on the time elapsed since their birth, their size, and/or the volume added since their birth-the timer, sizer, and adder models, respectively. Here, we propose unified adder-sizer models and investigate some of the properties of different adder processes arising in cellular proliferation. Although the adder-sizer model provides a direct way to model cell population structure, we illustrate how it is mathematically related to the well-known model in which cell division depends on age and size. Existence and uniqueness of weak solutions to our 2+1-dimensional PDE model are proved, leading to the convergence of the discretized numerical solutions and allowing us to numerically compute the dynamics of cell population densities. We then generalize our PDE model to incorporate recent experimental findings of a system exhibiting mother-daughter correlations in cellular growth rates. Numerical experiments illustrating possible average cell volume blowup and the dynamical behavior of cell populations with mother-daughter correlated growth rates are carried out. Finally, motivated by new experimental findings, we extend our adder model cases where the controlling variable is the added size between DNA replication initiation points in the cell cycle

    Transfer function characteristics of super resolving systems

    Get PDF
    Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed
    corecore