1,457 research outputs found

    Unconventional Metallic Magnetism in LaCrSb{3}

    Get PDF
    Neutron-diffraction measurements in LaCrSb{3} show a coexistence of ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively (T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step was observed in the specific heat at Tc. Coexisting localized and itinerant spins are suggested.Comment: PRL, in pres

    K-edge X-ray absorption spectra in transition metal oxides beyond the single particle approximation: shake-up many body effects

    Get PDF
    The near edge structure (XANES) in K-edge X-ray absorption spectroscopy (XAS) is a widely used tool for studying electronic and local structure in materials. The precise interpretation of these spectra with the help of calculations is hence of prime importance, especially for the study of correlated materials which have a complicated electronic structure per se. The single particle approach, for example, has generally limited itself to the dominant dipolar cross-section. It has long been known however that effects beyond this approach should be taken into account, both due to the inadequacy of such calculations when compared to experiment and the presence of shake-up many-body satellites in core-level photoemission spectra of correlated materials. This effect should manifest itself in XANES spectra and the question is firstly how to account for it theoretically and secondly how to verify it experimentally. By using state-of-the-art first principles electronic structure calculations and 1s photoemission measurements we demonstrate that shake-up many-body effects are present in K-edge XAS dipolar spectra of NiO, CoO and CuO at all energy scales. We show that shake-up effects can be included in K-edge XAS spectra in a simple way by convoluting the single-particle first-principles calculations including core-hole effects with the 1s photoemission spectra. We thus describe all features appearing in the XAS dipolar cross-section of NiO and CoO and obtain a dramatic improvement with respect to the single-particle calculation in CuO. These materials being prototype correlated magnetic oxides, our work points to the presence of shake-up effects in K-edge XANES of most correlated transition metal compounds and shows how to account for them, paving the way to a precise understanding of their electronic structure.Comment: 6 pages, 4 picture

    Bimetallic Pt(II)-bipyridyl-diacetylide/Ln(III) tris-diketonate adducts based on a combination of coordinate bonding and hydrogen bonding between the metal fragments: syntheses, structures and photophysical properties

    Get PDF
    The luminescent Pt(II) complex [Pt(4,4'-Bu-t(2)-bipy){CC-(5-pyrimidinyl)}(2)] (1) was prepared by coupling of [Pt(4,4'-Bu-t(2)-bipy)Cl-2] with 5-ethynyl-pyrimidine, and contains two pyrimidinyl units pendant from a Pt(H) bipyridyl diacetylide core; it shows luminescence at 520 nm which is typical of Pt(II) luminophores of this type. Reaction with [Ln(hfac)(3)(H2O)(2)] (hfac = anion of hexafluoroacetylacetone) affords as crystalline solids the compounds [1 center dot {Ln(hfac)(3)(H2O)}{Ln(hfac)(3)(H2O)(2)}] (Ln = Nd, Gd, Er, Yb), in which the {Ln(hfac)(3)(H2O)} unit is coordinated to one pyrimidine ring via an N atom, whereas the {Ln(hfac)(3)(H2O)(2)} unit is associated with two N atoms, one from each pyrimidine ring of 1, via N center dot center dot center dot HOH hydrogen-bonding interactions involving the coordinated water ligands on the lanthanide centre. Solution spectroscopic studies show that the luminescence of 1 is partly quenched on addition of [Ln(hfac)(3)(H2O)(2)] (Ln = Er, Nd) by formation of Pt(II)/Ln(III) adducts in which Pt(II)-> Ln(III) photoinduced energy-transfer occurs to the low-lying f-f levels of the Ln(Ill) centre. Significant quenching occurs with both Er(Ill) and Nd(III) because both have several f-f states which match well the (MLCT)-M-3 emission energy of 1. Time-resolved luminescence studies show that Pt(II)-Er(III) energy-transfer (7.0 x 10(7) M-1) is around three times faster than Pt(II)-> Nd(III) energy-transfer (approximate to 2 x 10(7) M-1) over the same distance because the luminescence spectrum of l overlaps better with the absorption spectrum of Er(111) than with Nd(III). In contrast Yb(111) causes no significant quenching of 1 because it has only a single f-f excited level which is a poor energy match for the Pt(II)-based excited state

    Low Temperature Solution-Phase Deposition of SnS Thin Films

    Get PDF
    The solution-phase deposition of inorganic semiconductors is a promising, scalable method for the manufacture of thin film photovoltaics. Deposition of photovoltaic materials from molecular or colloidal inks offers the possibility of inexpensive, rapid, high-throughput thin film fabrication through processes such as spray coating. For example, CdTe, Cu(In,Ga)(S,Se)_2 (CIGS), and CH_3NH_3Pb(Cl,I)_3 perovskite-based thin film solar cells have been previously deposited using solution-based processes. Inks have also recently been developed for the solution deposition of Cu_2ZnSn(S,Se)_4 (CZTS) and FeS_2 (iron pyrite) absorber layers for thin film solar applications, in order to provide sustainable alternatives to materials that contain environmentally harmful heavy metals (e.g., Cd, Pb) and/or scarce elements (e.g., Te, In)

    Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures

    Full text link
    The electronic structure of C_(4N+2) carbon rings exhibits competing many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle or bond length alternated geometry. Highly accurate quantum Monte Carlo results indicate the existence of a crossover between C_10 and C_14 from bond angle to bond length alternation. The aromatic isomer is always a transition state. The driving mechanism is the second-order Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure

    Design principles for the future internet architecture

    Get PDF
    Design principles play a central role in the architecture of the Internet as driving most engineering decisions at conception level and operational level. This paper is based on the EC Future Internet Architecture (FIArch) Group results and identifies some of the design principles that we expect to govern the future architecture of the Internet. We believe that it may serve as a starting point and comparison for most research and development projects that target the so-called Future Internet Architecture

    Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures

    Get PDF
    Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling

    Phase Inhomogeneity of the Itinerant Ferromagnet MnSi at High Pressures

    Full text link
    The pressure induced quantum phase transition of the weakly itinerant ferromagnet MnSi is studied using zero-field 29Si^{29}Si NMR spectroscopy and relaxation. Below P1.2GPaP^*\approx 1.2GPa, the intensity of the signal and the nuclear spin-lattice relaxation is independent of pressure, even though the amplitude of the magnetization drops by 20% from the ambient pressure amplitude. For P>PP>P^*, the decreasing intensity within the experimentally detectable bandwidth signals the onset of an inhomogeneous phase that persists to the highest pressure measured, P1.75GPaP\ge 1.75GPa, which is well beyond the known critical pressure Pc=1.46GPaP_c=1.46GPa. Implications for the non-Fermi Liquid behavior observed for P>PcP>P_c are discussed.Comment: 4 pages, 4 figure

    Progress and status of APEmille

    Get PDF
    We report on the progress and status of the APEmille project: a SIMD parallel computer with a peak performance in the TeraFlops range which is now in an advanced development phase. We discuss the hardware and software architecture, and present some performance estimates for Lattice Gauge Theory (LGT) applications.Comment: Talk presented at LATTICE97, 3 pages, Late

    Carbon clusters near the crossover to fullerene stability

    Get PDF
    The thermodynamic stability of structural isomers of C24\mathrm{C}_{24}, C26\mathrm{C}_{26}, C28\mathrm{C}_{28} and C32\mathrm{C}_{32}, including fullerenes, is studied using density functional and quantum Monte Carlo methods. The energetic ordering of the different isomers depends sensitively on the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo calculations predict that a C24\mathrm{C}_{24} isomer is the smallest stable graphitic fragment and that the smallest stable fullerenes are the C26\mathrm{C}_{26} and C28\mathrm{C}_{28} clusters with C2v\mathrm{C}_{2v} and Td\mathrm{T}_{d} symmetry, respectively. These results support proposals that a C28\mathrm{C}_{28} solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper and related information see http://www.tcm.phy.cam.ac.uk/~prck
    corecore