576 research outputs found

    Bi-stability of mixed states in neural network storing hierarchical patterns

    Full text link
    We discuss the properties of equilibrium states in an autoassociative memory model storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that symmetric mixed states (hereafter, mixed states) are bi-stable on the associative memory model storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological implication of this model. Sugase et al. analyzed the time-course of the information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also discuss the relation between the theoretical results and the physiological experiments of Sugase et al.Comment: 18 pages, 6 figure

    Scrutinizing LSP Dark Matter at the LHC

    Get PDF
    We show that LHC experiments might well be able to determine all the parameters required for a prediction of the present density of thermal LSP relics from the Big Bang era. If the LSP is an almost pure bino we usually only need to determine its mass and the mass of the SU(2) singlet sleptons. This information can be obtained by reconstructing the cascade q~Lχ~20q~Rqχ~10+q\tilde{q}_L \to \tilde{\chi}_2^0 q \to \tilde{\ell}_R \ell q \to \tilde{\chi}_1^0 \ell^+ \ell^- q. The only requirement is that m~R<mχ~20m_{\tilde{\ell}_R} < m_{\tilde{\chi}_2^0}, which is true for most of the cosmologically interesting parameter space. If the LSP has a significant higgsino component, its predicted thermal relic density is smaller than for an equal--mass bino. We show that in this case squark decays also produce significant numbers of χ~40\tilde{\chi}_4^0 and χ~2±\tilde{\chi}_2^\pm. Reconstructing the corresponding decay cascades then allows to determine the higgsino component of the LSP

    Stochastic transitions of attractors in associative memory models with correlated noise

    Full text link
    We investigate dynamics of recurrent neural networks with correlated noise to analyze the noise's effect. The mechanism of correlated firing has been analyzed in various models, but its functional roles have not been discussed in sufficient detail. Aoyagi and Aoki have shown that the state transition of a network is invoked by synchronous spikes. We introduce two types of noise to each neuron: thermal independent noise and correlated noise. Due to the effects of correlated noise, the correlation between neural inputs cannot be ignored, so the behavior of the network has sample dependence. We discuss two types of associative memory models: one with auto- and weak cross-correlation connections and one with hierarchically correlated patterns. The former is similar in structure to Aoyagi and Aoki's model. We show that stochastic transition can be presented by correlated rather than thermal noise. In the latter, we show stochastic transition from a memory state to a mixture state using correlated noise. To analyze the stochastic transitions, we derive a macroscopic dynamic description as a recurrence relation form of a probability density function when the correlated noise exists. Computer simulations agree with theoretical results.Comment: 21 page

    W Boson Polarisation at LEP2

    Full text link
    Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.Comment: 20 pages, 3 figures, Submitted to Phys. Letts.

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.

    Search for Yukawa Production of a Light Neutral Higgs Boson at LEP

    Get PDF
    Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass energy. A likelihood selection is applied to separate background and signal. The number of observed events is in good agreement with the expected background. Within a CP-conserving 2HDM type II model the cross-section for Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta| for the production of the CP-odd A and the CP-even h, respectively, where tan beta is the ratio of the vacuum expectation values of the Higgs doublets and alpha is the mixing angle between the neutral CP-even Higgs bosons. From our data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6 and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson, assuming a branching fraction into tau+tau- of 100%. An interpretation of the limits within a 2HDM type II model with Standard Model particle content is given. These results impose constraints on several models that have been proposed to explain the recent BNL measurement of the muon anomalous magnetic moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.

    Measurement of the Hadronic Cross-Section for the Scattering of Two Virtual Photons at LEP

    Get PDF
    The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.Comment: 30 pages, 10 figures, Submitted to Eur.Phys.J.

    Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    Full text link
    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.Comment: 42 pages, 18 figure
    corecore