735 research outputs found

    HST ultraviolet spectral energy distributions for three ultraluminous infrared galaxies

    Get PDF
    We present HST Faint Object Camera ultraviolet (230 nm and 140 nm) images of three ultraluminous infrared galaxies (ULIG: L_ir > 10^12 L_sun) selected from the IRAS Revised Bright Galaxy Sample. The purpose is to estimate spectral energy distributions (SEDs) to facilitate the identification of similar objects at high redshift in deep optical, infrared, and submm surveys. All three galaxies (VII Zw031 = IRAS F12112+0305, and IRAS F22491-1808) were well detected at 230 nm. Two of the three were marginally detected at 140 nm. The fluxes, together with ground-based optical and infrared photometry, are used to compute SEDs over a wide wavelength range. The measured SEDs drop from the optical to the ultraviolet, but the magnitude of the drop ranges from a factor of ~3 in IRAS F22491-1808 to a factor of ~100 in VIIZw031. This is most likely due to different internal extinctions. Such an interpretation is also suggested by extrapolating to ultraviolet wavelengths the optical internal extinction measured in VIIZw031. K-corrections are calculated to determine the colors of the sample galaxies as seen at high redshifts. Galaxies like VIIZw031 have very low observed rest-frame UV fluxes which means that such galaxies at high redshift will be extremely red or even missing in optical surveys. On the other hand, galaxies like IRAS F12112+0305 and IRAS F22491-1808, if seen at high redshift, would be sufficiently blue that they would not easily be distinguished from normal field galaxies, and therefore, identified as ULIGs. The implication is then that submillimeter surveys may be the only means of properly identifying the majority of ULIGs at high redshift.Comment: AJ in press, TeX, 23 pages, 7 tab, 17 figs available also (at higher resolution) from http://www.ast.cam.ac.uk~trentham/ufigs.htm

    Weak lensing observations of the "dark" cluster MG2016+112

    Get PDF
    We investigate the possible existence of a high-redshift (z=1) cluster of galaxies associated with the QSO lens system MG2016+112. From an ultra-deep R- and less deep V- and I-band Keck images and a K-band mosaic from UKIRT, we detect ten galaxies with colors consistent with the lensing galaxy within 225h^{-1} kpc of the z=1.01 lensing galaxy. This represents an overdensity of more than ten times the number density of galaxies with similar colors in the rest of the image. We also find a group of seven much fainter objects closely packed in a group only 27h^{-1} kpc north-west of the lensing galaxy. We perform a weak lensing analysis on faint galaxies in the R-band image and detect a mass peak of a size similar to the mass inferred from X-ray observations of the field, but located 64" northwest of the lensing galaxy. From the weak lensing data we rule out a similar sized mass peak centered on the lensing galaxy at the 2 sigma level.Comment: 9 pages, 10 figures, submitted to A&A version with figure 4 at higher resolution can be downloaded from http://www.mpa-garching.mpg.de/~clowe/mg2016aa.ps.g

    New Probable Dwarf Galaxies in Northern Groups of the Local Supercluster

    Full text link
    We have searched for nearby dwarf galaxies in 27 northern groups with characteristic distances 8-15 Mpc based on the Second Palomar Sky Survey prints. In a total area of about 2000 square degrees, we have found 90 low-surface-brightness objects, more than 60% of which are absent from known catalogs and lists. We have classified most of these objects (~80%) as irregular dwarf systems. The first 21-cm line observations of the new objects with the 100-m Effelsberg radio telescope showed that the typical linear diameters (1-2 kpc), internal motions (30 km/s), and hydrogen masses (~2*10^7M_sun) galaxies correspond to those expected for the dwarf population of nearby groups.Comment: 8 pages, 1 fugur

    Starburst-driven Starbursts in the Heart of Ultraluminous Infrared Galaxies

    Get PDF
    There is increasing evidence for the presence of blue super star clusters in the central regions of ultraluminous infrared galaxies like Arp 220. Ultraluminous galaxies are thought to be triggered by galaxy mergers, and it has often been argued that these super star clusters may form during violent collisions between gas clouds in the final phase of the mergers. We now investigate another set of models which differ from previous ones in that the formation of the super star clusters is linked directly to the very intense starburst occurring at the very center of the galaxy. Firstly we show that a scenario in which the super star clusters form in material compressed by shock waves originating from the central starburst is implausible because the objects so produced are much smaller than the observed star clusters in Arp 220. We then investigate a scenario (based on the Shlosman-Noguchi model) in which the infalling dense gas disk is unstable gravitationally and collapses to form massive gaseous clumps. Since these clumps are exposed to the external high pressure driven by the superwind (a blast wave driven by a collective effect of a large number of supernovae in the very core of the galaxy), they can collapse and then massive star formation may be induced in them. The objects produced in this kind of collapse have properties consistent with those of the observed super star clusters in the center of Arp 220.Comment: 13 pages, 1 figure, ApJ (Letters) in pres

    The cluster galaxy luminosity function at z=0.3z=0.3: a recent origin for the faint-end upturn ?

    Full text link
    We derive deep luminosity functions (to Mz=15M_z=-15) for galaxies in Abell 1835 (z=0.25z=0.25) and AC 114 (z=0.31z=0.31) and compare these with the local zz' luminosity function for 69 clusters. The data show that the faint-end upturn, the excess of galaxies above a single Schechter function at Mz<17M_z < -17, does not exist in the higher redshift clusters. This suggests that the faint-end upturn galaxies have been created recently, by infall into clusters of star-forming field populations or via tidal disruption of brighter objects.^MComment: 6 pages, MNRAS main journal, accepted for publicatio

    Weak Lensing by High-Redshift Clusters of Galaxies II: Mean Redshift of the Faint Background Galaxy Population

    Full text link
    We use weak lensing shear measurements of six z>0.5 clusters of galaxies to derive the mean lensing redshift of the background galaxies used to measure the shear. Five of these clusters are compared to X-ray mass models and verify a mean lensing redshift for a 23<R<26.3, R-I<0.9 background galaxy population in good agreement with photometric redshift surveys of the HDF-S. The lensing strength of the six clusters is also analyzed as a function of the magnitude of the background galaxies, and an increase in shear with increasing magnitude is detected at moderate significance. The change in the strength of the shear is presumed to be caused by an increase in the mean redshift of the background galaxies with increasing magnitude, and the degree of change detected is also in agreement with those in photometric redshift surveys of the HDF-S.Comment: 6 pages, 4 figures, accepted by A&

    A Photometric and Kinematic Study of AWM 7

    Full text link
    We have measured redshifts and Kron-Cousins R-band magnitudes for a sample of galaxies in the poor cluster AWM 7. We have measured redshifts for 172 galaxies; 106 of these are cluster members. We determine the luminosity function from a photometric survey of the central 1.2 h^{-1} x 1.2 h^{-1} Mpc. The LF has a bump at the bright end and a faint-end slope of \alpha = -1.37+-0.16, populated almost exclusively by absorption-line galaxies. The cluster velocity dispersion is lower in the core (\sim 530 km/s) than at the outskirts (\sim 680 km/s), consistent with the cooling flow seen in the X-ray. The cold core extends \sim 150 h^{-1} kpc from the cluster center. The Kron-Cousins R-band mass-to-light ratio of the system is 650+-170 h M_\odot/L_\odot, substantially lower than previous optical determinations, but consistent with most previous X-ray determinations. We adopt H_0 = 100 h km/s/Mpc throughout this paper; at the mean cluster redshift, (5247+-76 km/s), 1 h^{-1} Mpc subtends 65\farcm5.Comment: 37 pages, LaTeX, including 12 Figures and 1 Table. Accepted for publication in the Astronomical Journa

    The Near-Infrared Number Counts and Luminosity Functions of Local Galaxies

    Get PDF
    This study presents a wide-field near-infrared (K-band) survey in two fields; SA 68 and Lynx 2. The survey covers an area of 0.6 deg.2^2, complete to K=16.5. A total of 867 galaxies are detected in this survey of which 175 have available redshifts. The near-infrared number counts to K=16.5 mag. are estimated from the complete photometric survey and are found to be in close agreement with other available studies. The sample is corrected for incompleteness in redshift space, using selection function in the form of a Fermi-Dirac distribution. This is then used to estimate the local near-infrared luminosity function of galaxies. A Schechter fit to the infrared data gives: MK=25.1±0.3^\ast_K = -25.1 \pm 0.3, α=1.3±0.2\alpha = -1.3\pm 0.2 and ϕ=(1.5±0.5)×103\phi^\ast =(1.5\pm 0.5)\times 10^{-3} Mpc3^{-3} (for H0=50_0=50 Km/sec/Mpc and q0=0.5_0=0.5). When reduced to α=1\alpha=-1, this agrees with other available estimates of the local IRLF. We find a steeper slope for the faint-end of the infrared luminosity function when compared to previous studies. This is interpreted as due to the presence of a population of faint but evolved (metal rich) galaxies in the local Universe. However, it is not from the same population as the faint blue galaxies found in the optical surveys. The characteristic magnitude (MKM^\ast_K) of the local IRLF indicates that the bright red galaxies (MK27M_K\sim -27 mag.) have a space density of 5×105\le 5\times 10^{-5} Mpc3^{-3} and hence, are not likely to be local objects.Comment: 24 pages, 8 figures, AASTEX 4.0, published in ApJ 492, 45

    A SAURON study of dwarf elliptical galaxies in the Virgo Cluster: kinematics and stellar populations

    Full text link
    Dwarf elliptical galaxies (dEs) are the most common galaxy type in nearby galaxy clusters; even so, many of their basic properties have yet to be quantified. Here we present the results of our study of 4 Virgo dwarf ellipticals obtained with the SAURON integral field unit on the William Herschel Telescope (La Palma, Spain). While traditional long-slit observations are likely to miss more complicated kinematic features, with SAURON we are able to study both kinematics and stellar populations in two dimensions, obtaining a much more detailed view of the mass distribution and star formation histories. What is visible even in such a small sample is that dEs are not a uniform group, not only morphologically, but also as far as their kinematic and stellar population properties are concerned. We find the presence of substructures, varying degrees of flattening and of rotation, as well as differences in age and metallicity gradients. We confirm that two of our galaxies are significantly flattened, yet non-rotating objects, which makes them likely triaxial systems. The comparison between the dwarf and the giant groups shows that dEs could be a low-mass extension of Es in the sense that they do seem to follow the same trends with mass. However, dEs as progenitors of Es seem less likely as we have seen that dEs have much lower abundance ratios.Comment: 8 pages, 6 figures; to appear in the proceedings of the JENAM 2010 Symposium on Dwarf Galaxies (Lisbon, September 9-10, 2010); minor edits and references adde
    corecore