1,514 research outputs found
The 8.3 and 12.4 micron imaging of the Galactic Center source complex with the Goddard infrared array camera
A 30 x 30 arcsec field at the Galactic Center (1.5 x 1.5 parsec) was mapped at 8.3 microns and 12.41 microns with high spatial resolution and accurate relative astrometry, using the 16 x 16 Si:Bi accumulation mode charge injection device Goddard infrared array camera. The design and performance of the array camera detector electronics system and image data processing techniques are discussed. Color temperature and dust opacity distributions derived from the spatially accurate images indicate that the compact infrared sources and the large scale ridge structure are bounded by warmer, more diffuse material. None of the objects appear to be heated appreciably by internal luminosity sources. These results are consistent with the model proposing that the complex is heated externally by a strong luminosity source at the Galactic Center, which dominates the energetics of the inner few parsecs of the galaxy
Structure in the nucleus of NGC 1068 at 10 microns
New 8 to 13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8 to 13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central regions of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet induced star formation in NGC 1068
Measurements of the branching fractions of B+→ppK+ decays
The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Search for the rare decays and
A search for the rare decay of a or meson into the final
state is performed, using data collected by the LHCb experiment
in collisions at and TeV, corresponding to an integrated
luminosity of 3 fb. The observed number of signal candidates is
consistent with a background-only hypothesis. Branching fraction values larger
than for the decay mode are
excluded at 90% confidence level. For the decay
mode, branching fraction values larger than are excluded at
90% confidence level, this is the first branching fraction limit for this
decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm
A model-independent confirmation of the state
The decay is analyzed using of
collision data collected with the LHCb detector. A model-independent
description of the mass spectrum is obtained, using as input the
mass spectrum and angular distribution derived directly from data,
without requiring a theoretical description of resonance shapes or their
interference. The hypothesis that the mass spectrum can be
described in terms of reflections alone is rejected with more than
8 significance. This provides confirmation, in a model-independent way,
of the need for an additional resonant component in the mass region of the
exotic state.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-038.htm
A study of violation in () with the modes , and
An analysis of the decays of and is presented in which the meson is reconstructed in
the three-body final states , and . Using data from LHCb corresponding to an integrated luminosity of
3.0 fb of collisions, measurements of several observables are
performed. First observations are obtained of the suppressed ADS decay and the quasi-GLW decay . The results are interpreted in the
context of the unitarity triangle angle and related parameters
Observation of the decay
The decay is observed for the first
time, using proton-proton collisions collected with the LHCb detector
corresponding to an integrated luminosity of 3fb. A signal yield of
decays is reported with a significance of 6.2 standard deviations.
The ratio of the branching fraction of \B_c \rightarrow J/\psi K^+ K^- \pi^+
decays to that of decays is measured to be
, where the first uncertainty is statistical and the
second is systematic.Comment: 18 pages, 2 figure
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
- …
