287 research outputs found
Collisionless reconnection: The sub-microscale mechanism of magnetic field line interaction
Magnetic field lines are quantum objects carrying one quantum
of magnetic flux and have finite radius . Here
we argue that they possess a very specific dynamical interaction. Parallel
field lines reject each other. When confined to a certain area they form
two-dimensional lattices of hexagonal structure. We estimate the filling factor
of such an area. Antiparallel field lines, on the other hand, attract each
other. We identify the physical mechanism as being due to the action of the
gauge potential field which we determine quantum mechanically for two parallel
and two antiparallel field lines. The distortion of the quantum electrodynamic
vacuum causes a cloud of virtual pairs. We calculate the virtual pair
production rate from quantum electrodynamics and estimate the virtual pair
cloud density, pair current and Lorentz force density acting on the field lines
via the pair cloud. These properties of field line dynamics become important in
collisionless reconnection, consistently explaining why and how reconnection
can spontaneously set on in the field-free centre of a current sheet below the
electron-inertial scale.Comment: 13 journal pages, 6 figures, submitted to Ann. Geophy
Gibbsian theory of power law distributions
It is shown that power law phase space distributions describe marginally
stable Gibbsian equilibria far from thermal equilibrium which are expected to
occur in collisionless plasmas containing fully developed quasi-stationary
turbulence. Gibbsian theory is extended on the fundamental level to
statistically dependent subsystems introducing an `ordering parameter'
. Particular forms for the entropy and partition functions are derived
with super-additive (non-extensive) entropy, and a redefinition of temperature
in such systems is given.Comment: Physical Review Letters revised second revision (and shortened
because of overlength) co-author adde
Violent Relaxation of Indistinguishable Objects and Neutrino Hot Dark Matter in Clusters of Galaxies
The statistical mechanical investigation of violent relaxation (Lynden-Bell
1967) is extended to indistinguishable objects. It is found that,
coincidentally, the equilibrium distribution is the same as that obtained for
classical objects. For massive neutrinos, the Tremaine \& Gunn (1979) phase
space bound is revisited and reinterpretated as the limit indicating the onset
of degeneracy related to the coarse-grained phase space distribution. In the
context of one of the currently most popular cosmological models, the Cold and
Hot Dark Matter (CHDM) model (Primack et al. 1995), the onset of degeneracy may
be of importance in the core region of clusters of galaxies. Degeneracy allows
the neutrino HDM density to exceed the limit imposed by the Tremaine \& Gunn
(1979) bound while accounting for the phase space bound.Comment: AASTeX, 16 pages, 2 EPS figures, uses aas2pp4.sty. Accepted by ApJ
Letter
Generic model for magnetic explosions applied to solar flares
An accepted model for magnetospheric substorms is proposed as the basis for a
generic model for magnetic explosions, and is applied to solar flares. The
model involves widely separated energy-release and particle-acceleration
regions, with energy transported Alfv\'enically between them. On a global
scale, these regions are coupled by a large-scale current that is set up during
the explosion by redirection of pre-existing current associated with the stored
magnetic energy. The explosion-related current is driven by an electromotive
force (EMF) due to the changing magnetic flux enclosed by this current. The
current path and the EMF are identified for an idealized quadrupolar model for
a flare
Generalised-Lorentzian Thermodynamics
We extend the recently developed non-gaussian thermodynamic formalism
\cite{tre98} of a (presumably strongly turbulent) non-Markovian medium to its
most general form that allows for the formulation of a consistent thermodynamic
theory. All thermodynamic functions, including the definition of the
temperature, are shown to be meaningful. The thermodynamic potential from which
all relevant physical information in equilibrium can be extracted, is defined
consistently. The most important findings are the following two: (1) The
temperature is defined exactly in the same way as in classical statistical
mechanics as the derivative of the energy with respect to the entropy at
constant volume. (2) Observables are defined in the same way as in Boltzmannian
statistics as the linear averages of the new equilibrium distribution function.
This lets us conclude that the new state is a real thermodynamic equilibrium in
systems capable of strong turbulence with the new distribution function
replacing the Boltzmann distribution in such systems. We discuss the ideal gas,
find the equation of state, and derive the specific heat and adiabatic exponent
for such a gas. We also derive the new Gibbsian distribution of states. Finally
we discuss the physical reasons for the development of such states and the
observable properties of the new distribution function.Comment: 13 pages, 1 figur
Kinetic description of avalanching systems
Avalanching systems are treated analytically using the renormalization group
(in the self-organized-criticality regime) or mean-field approximation,
respectively. The latter describes the state in terms of the mean number of
active and passive sites, without addressing the inhomogeneity in their
distribution. This paper goes one step further by proposing a kinetic
description of avalanching systems making use of the distribution function for
clusters of active sites. We illustrate application of the kinetic formalism to
a model proposed for the description of the avalanching processes in the
reconnecting current sheet of the Earth magnetosphere.Comment: 9 page
The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath
Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958) and Chandrasekhar et al. (1958) from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature) anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B<sub>0</sub>|<sup>2</sup>~O(1). It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped in mirror modes and redistribute energy (cf. for instance, Chisham et al. 1998). Such trapped electrons excite banded whistler wave emission known under the name of lion roars and indicating that the mirror modes contain a trapped particle component while leading to the splitting of particle distributions (see Baumjohann et al., 1999) into trapped and passing particles. The most amazing fact about mirror modes is, however, that they evolve in the practically fully collisionless regime of high temperature plasma where it is on thermodynamic reasons entirely impossible to expel any magnetic field from the plasma. The fact that magnetic fields are indeed locally extracted makes mirror modes similar to 'superconducting' structures in matter as known only at extremely low temperatures. Of course, microscopic quantum effects do not play a role in mirror modes. However, it seems that all mirror structures have typical scales of the order of the ion inertial length which implies that mirrors evolve in a regime where the transverse ion and electron motions decouple. In this case the Hall kinetics comes into play. We estimate that in the marginally stationary nonlinear state of the evolution of mirror modes the modes become stretched along the magnetic field with k<sub>||</sub>=0 and that a small number the order of a few percent of the particle density is responsible only for the screening of the field from the interior of the mirror bubbles
A categorification of Morelli's theorem
We prove a theorem relating torus-equivariant coherent sheaves on toric
varieties to polyhedrally-constructible sheaves on a vector space. At the level
of K-theory, the theorem recovers Morelli's description of the K-theory of a
smooth projective toric variety. Specifically, let be a proper toric
variety of dimension and let M_\bR = \mathrm{Lie}(T_\bR^\vee)\cong \bR^n
be the Lie algebra of the compact dual (real) torus T_\bR^\vee\cong U(1)^n.
Then there is a corresponding conical Lagrangian \Lambda \subset T^*M_\bR and
an equivalence of triangulated dg categories \Perf_T(X) \cong
\Sh_{cc}(M_\bR;\Lambda), where \Perf_T(X) is the triangulated dg category of
perfect complexes of torus-equivariant coherent sheaves on and
\Sh_{cc}(M_\bR;\Lambda) is the triangulated dg category of complex of sheaves
on M_\bR with compactly supported, constructible cohomology whose singular
support lies in . This equivalence is monoidal---it intertwines the
tensor product of coherent sheaves on with the convolution product of
constructible sheaves on M_\bR.Comment: 20 pages. This is a strengthened version of the first half of
arXiv:0811.1228v3, with new results; the second half becomes
arXiv:0811.1228v
- …
