4,605 research outputs found

    Acoustic bubble removal method

    Get PDF
    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid

    Correlations in Quantum Spin Ladders with Site and Bond Dilution

    Full text link
    We investigate the effects of quenched disorder, in the form of site and bond dilution, on the physics of the S=1/2S=1/2 antiferromagnetic Heisenberg model on even-leg ladders. Site dilution is found to prune rung singlets and thus create localized moments which interact via a random, unfrustrated network of effective couplings, realizing a random-exchange Heisenberg model (REHM) in one spatial dimension. This system exhibits a power-law diverging correlation length as the temperature decreases. Contrary to previous claims, we observe that the scaling exponent is non-universal, i.e., doping dependent. This finding can be explained by the discrete nature of the values taken by the effective exchange couplings in the doped ladder. Bond dilution on even-leg ladders leads to a more complex evolution with doping of correlations, which are weakly enhanced in 2-leg ladders, and are even suppressed for low dilution in the case of 4-leg and 6-leg ladders. We clarify the different aspects of correlation enhancement and suppression due to bond dilution by isolating the contributions of rung-bond dilution and leg-bond dilution.Comment: 13 pages, 15 figure

    The dynamics of free liquid drops

    Get PDF
    The behavior of rotating and oscillating free liquid drops was studied by many investigators theoretically for many years. More recent numerical treatments have yielded predictions which are yet to be verified experimentally. The purpose is to report the results of laboratory work as well as that of the experiments carried out in space during the flight of Spacelab 3, and to compare it with the existing theoretical studies. Ground-based experiments were attempted as a first approximation to the ideal boundary conditions used by the theoretical treatments by neutralizing the overwhelming effects of the Earth's gravitational field with an outside supporting liquid and with the use of levitation technology. The viscous and inertial loading of such a suspending fluid was found to profoundly effect the results, but the information thus gathered has emphasized the uniqueness of the experimental data obtained in the low-gravity environment of space

    A new root-knot nematode, Meloidogyne moensi n. sp. (Nematoda : Meloidogynidae), parasitizing Robusta coffee from Western Highlands, Vietnam

    Get PDF
    A new root-knot nematode, parasitizing Robusta coffee in Dak Lak Province, Western Highlands of Vietnam, is described as Meloidogyne moensi n. sp. Morphological and molecular analyses demonstrated that this species differs clearly from other previously described root-knot nematodes. Morphologically, the new species is characterized by a swollen body of females with a small posterior protuberance that elongated from ovoid to saccate; perineal patterns with smooth striae, continuous and low dorsal arch; lateral lines marked as a faint space or linear depression at junction of the dorsal and ventral striate; distinct phasmids; perivulval region free of striae; visible and wide tail terminus surrounding by concentric circles of striae; medial lips of females in dumbbell-shaped and slightly raised above lateral lips; female stylet is normally straight with posteriorly sloping stylet knobs; lip region of second stage juvenile (J2) is not annulated; medial lips and labial disc of J2 formed dumbbell shape; lateral lips are large and triangular; tail of J2 is conoid with rounded unstriated tail tip; distinct phasmids and hyaline; dilated rectum. Meloidogyne moensi n. sp. is most similar to M. africana, M. ottersoni by prominent posterior protuberance. Results of molecular analysis of rDNA sequences including the D2-D3 expansion regions of 28S rDNA, COI, and partial COII/16S rRNA of mitochondrial DNA support for the new species status

    ISOWN: accurate somatic mutation identification in the absence of normal tissue controls.

    Get PDF
    BackgroundA key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison.ResultsIn this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues).ConclusionsIn this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN

    Analytic Calculation of Radio Emission from Extensive Air Showers subjected to Atmospheric Electric Fields

    Get PDF
    We have developed a code that semi-analytically calculates the radio footprint (intensity and polarization) of an extensive air shower subject to atmospheric electric fields. This can be used to reconstruct the height dependence of atmospheric electric field from the measured radio footprint. The various parameterizations of the spatial extent of the induced currents are based on the results of Monte-Carlo shower simulations. The calculated radio footprints agree well with microscopic CoREAS simulations.Comment: Contribution to the proceedings of the ARENA conference, Groningen, The Netherlands, June 7-10, 201
    corecore