10 research outputs found
The Casimir effect: from quantum to critical fluctuations
The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known
example of fluctuation-induced long-ranged force acting on objects (conducting
plates) immersed in a fluctuating medium (quantum electromagnetic field in
vacuum). A similar effect emerges in statistical physics, where the force
acting, e.g., on colloidal particles immersed in a binary liquid mixture is
affected by the classical thermal fluctuations occurring in the surrounding
medium. The resulting Casimir-like force acquires universal features upon
approaching a critical point of the medium and becomes long-ranged at
criticality. In turn, this universality allows one to investigate theoretically
the temperature dependence of the force via representative models and to
stringently test the corresponding predictions in experiments. In contrast to
QED, the Casimir force resulting from critical fluctuations can be easily tuned
with respect to strength and sign by surface treatments and temperature
control. We present some recent advances in the theoretical study of the
universal properties of the critical Casimir force arising in thin films. The
corresponding predictions compare very well with the experimental results
obtained for wetting layers of various fluids. We discuss how the Casimir force
between a colloidal particle and a planar wall immersed in a binary liquid
mixture has been measured with femto-Newton accuracy, comparing these
experimental results with the corresponding theoretical predictions.Comment: Talk delivered at the International Workshop "60 Years of Casimir
Effect", Brasilia, 23-27 June 2008 (17 pages, 7 figures
Entrainment of Geotropic Oscillations in Hypocotyls of Heliunthus annuus - An Experimental and Theoretical Investigation. I. The Geotropic Movement Initiated by one Single Geotropic Stimulation
Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls
Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses
Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change
The necessity to adapt to climate change is even stronger for grapevine than for other crops, because grape berry composition—a key determinant of fruit and wine quality, typicity and market value— highly depends on “terroir” (complete natural environment), on vintage (annual climate variability), and on their interactions. In the same time, there is a strong demand to reduce the use of pesticides. Thus, the equation that breeders and grape growers must solve has three entries that cannot be dissociated: adaptation to climate change, reduction of pesticides, and maintenance of wine typicity. Although vineyard management may cope to some extent to the short–medium-term effects of climate change, genetic improvement is necessary to provide long-term sustainable solutions to these problems. Most vineyards over the world are planted using vines that harbor two grafted plants’ genomes. Although this makes the range of interactions (scion-atmosphere, rootstock-soil, scion-rootstock) more complex, it also opens up wider possibilities for the genetic improvement of either or both the grafted genotypes. Positive aspects related to grapevine breeding are as follows: (a) a wide genetic diversity of rootstocks and scions that has not been thoroughly explored yet; (b) progress in sequencing technologies that allows high-throughput sequencing of entire genomes, faster mapping of targeted traits and easier determination of genetic relationships; (c) progress in new breeding technologies that potentially permit precise modifications on resident genes; (d) automation of phenotyping that allows faster and more complete monitoring of many traits on relatively large plant populations; (e) functional characterization of an increasing number of genes involved in the control of development, berry metabolism, disease resistance, and adaptation to environment. Difficulties involve: (a) the perennial nature and the large size of the plant that makes field testing long and demanding in manpower; (b) the low efficiency of transformation, regeneration and small size of breeding populations; (c) the complexity of the adaptive traits and the need to define more clearly future ideotypes; (d) the lack of shared and integrative platforms allowing a complete appraisal of the genotype-phenotype-environmental links; (e) legal, market and consumer acceptance of new genotypes. The present chapter provides an overview of suitable strategies and challenges linked to the adaptation of viticulture to a changing environment
