14,505 research outputs found

    The observed infall of galaxies towards the Virgo cluster

    Full text link
    We examine the velocity field of galaxies around the Virgo cluster induced by its overdensity. A sample of 1792 galaxies with distances from the Tip of the Red Giant Branch, the Cepheid luminosity, the SNIa luminosity, the surface brightness fluctuation method, and the Tully-Fisher relation has been used to study the velocity-distance relation in the Virgocentric coordinates. Attention was paid to some observational biases affected the Hubble flow around Virgo. We estimate the radius of the zero-velocity surface for the Virgo cluster to be within (5.0 - 7.5) Mpc corresponding to (17 - 26)^\circ at the mean cluster distance of 17.0 Mpc. In the case of spherical symmetry with cosmological parameter \Omega_m=0.24 and the age of the Universe T_0= 13.7 Gyr, it yields the total mass of the Virgo cluster to be within M_T=(2.7 - 8.9) * 10^{14} M_\sun in reasonable agreement with the existing virial mass estimates for the cluster.Comment: 22 pages, 11 figures, 2 tables. Accepted for publication in MNRA

    Our Peculiar Motion Away from the Local Void

    Full text link
    The peculiar velocity of the Local Group of galaxies manifested in the Cosmic Microwave Background dipole is found to decompose into three dominant components. The three components are clearly separated because they arise on distinct spatial scales and are fortuitously almost orthogonal in their influences. The nearest, which is distinguished by a velocity discontinuity at ~7 Mpc, arises from the evacuation of the Local Void. We lie in the Local Sheet that bounds the void. Random motions within the Local Sheet are small. Our Galaxy participates in the bulk motion of the Local Sheet away from the Local Void. The component of our motion on an intermediate scale is attributed to the Virgo Cluster and its surroundings, 17 Mpc away. The third and largest component is an attraction on scales larger than 3000 km/s and centered near the direction of the Centaurus Cluster. The amplitudes of the three components are 259, 185, and 455 km/s, respectively, adding collectively to 631 km/s in the reference frame of the Local Sheet. Taking the nearby influences into account causes the residual attributed to large scales to align with observed concentrations of distant galaxies and reduces somewhat the amplitude of motion attributed to their pull. On small scales, in addition to the motion of our Local Sheet away from the Local Void, the nearest adjacent filament, the Leo Spur, is seen to be moving in a direction that will lead to convergence with our filament. Finally, a good distance to an isolated galaxy within the Local Void reveals that this dwarf system has a motion of at least 230 km/s away from the void center. Given the velocities expected from gravitational instability theory in the standard cosmological paradigm, the distance to the center of the Local Void must be at least 23 Mpc from our position. The Local Void is large!Comment: Tentatively scheduled for Astrophysical Journal, 676 (March 20), 2008. 18 figures, 3 tables including web link for 2 tables, web links to 2 video

    The influence of galaxy surface brightness on the mass-metallicity relation

    Get PDF
    We study the effect of surface brightness on the mass-metallicity relation using nearby galaxies whose gas content and metallicity profiles are available. Previous studies using fiber spectra indicated that lower surface brightness galaxies have systematically lower metallicity for their stellar mass, but the results were uncertain because of aperture effect. With stellar masses and surface brightnesses measured at WISE W1 and W2 bands, we re-investigate the surface brightness dependence with spatially-resolved metallicity profiles and find the similar result. We further demonstrate that the systematical difference cannot be explained by the gas content of galaxies. For two galaxies with similar stellar and gas masses, the one with lower surface brightness tends to have lower metallicity. Using chemical evolution models, we investigate the inflow and outflow properties of galaxies of different masses and surface brightnesses. We find that, on average, high mass galaxies have lower inflow and outflow rates relative to star formation rate. On the other hand, lower surface brightness galaxies experience stronger inflow than higher surface brightness galaxies of similar mass. The surface brightness effect is more significant for low mass galaxies. We discuss implications on the different inflow properties between low and high surface brightness galaxies, including star formation efficiency, environment and mass assembly history
    corecore