682 research outputs found
Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations
Calibration of the second-generation LIGO interferometric gravitational-wave
detectors employs a method that uses injected periodic modulations to track and
compensate for slow temporal variations in the differential length response of
the instruments. These detectors utilize feedback control loops to maintain
resonance conditions by suppressing differential arm length variations. We
describe how the sensing and actuation functions of these servo loops are
parameterized and how the slow variations in these parameters are quantified
using the injected modulations. We report the results of applying this method
to the LIGO detectors and show that it significantly reduces systematic errors
in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version
of an article published in Classical and Quantum Gravity. IOP Publishing Ltd
is not responsible for any errors or omissions in this version of the
manuscript or any version derived from i
The Advanced LIGO Photon Calibrators
The two interferometers of the Laser Interferometry Gravitaional-wave
Observatory (LIGO) recently detected gravitational waves from the mergers of
binary black hole systems. Accurate calibration of the output of these
detectors was crucial for the observation of these events, and the extraction
of parameters of the sources. The principal tools used to calibrate the
responses of the second-generation (Advanced) LIGO detectors to gravitational
waves are systems based on radiation pressure and referred to as Photon
Calibrators. These systems, which were completely redesigned for Advanced LIGO,
include several significant upgrades that enable them to meet the calibration
requirements of second-generation gravitational wave detectors in the new era
of gravitational-wave astronomy. We report on the design, implementation, and
operation of these Advanced LIGO Photon Calibrators that are currently
providing fiducial displacements on the order of
m/ with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure
Reconstructing the calibrated strain signal in the Advanced LIGO detectors
Advanced LIGO's raw detector output needs to be calibrated to compute
dimensionless strain h(t). Calibrated strain data is produced in the time
domain using both a low-latency, online procedure and a high-latency, offline
procedure. The low-latency h(t) data stream is produced in two stages, the
first of which is performed on the same computers that operate the detector's
feedback control system. This stage, referred to as the front-end calibration,
uses infinite impulse response (IIR) filtering and performs all operations at a
16384 Hz digital sampling rate. Due to several limitations, this procedure
currently introduces certain systematic errors in the calibrated strain data,
motivating the second stage of the low-latency procedure, known as the
low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses
finite impulse response (FIR) filtering to apply corrections to the output of
the front-end calibration. It applies time-dependent correction factors to the
sensing and actuation components of the calibrated strain to reduce systematic
errors. The gstlal calibration pipeline is also used in high latency to
recalibrate the data, which is necessary due mainly to online dropouts in the
calibrated data and identified improvements to the calibration models or
filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table
Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs
Calibration of the Advanced LIGO detectors is the quantification of the
detectors' response to gravitational waves. Gravitational waves incident on the
detectors cause phase shifts in the interferometer laser light which are read
out as intensity fluctuations at the detector output. Understanding this
detector response to gravitational waves is crucial to producing accurate and
precise gravitational wave strain data. Estimates of binary black hole and
neutron star parameters and tests of general relativity require well-calibrated
data, as miscalibrations will lead to biased results. We describe the method of
producing calibration uncertainty estimates for both LIGO detectors in the
first and second observing runs.Comment: 15 pages, 21 figures, LIGO DCC P160013
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO
Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning
Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy
The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams
- …
