6,423 research outputs found

    WIYN Open Cluster Study XI: WIYN 3.5m Deep Photometry of M35 (NGC 2168)

    Get PDF
    We present deep BVI observations of the core of M35 and a nearby comparison field obtained at the WIYN 3.5m telescope under excellent seeing. These observations display the lower main sequence in BV and VI CMDs down to V = 23.3 and 24.6, respectively. At these faint magnitudes background field stars are far more numerous than the cluster stars, yet by using a smoothing technique and CMD density distribution subtraction we recover the cluster fiducial main sequence and luminosity function to V = 24.6. We find the location of the main sequence in these CMDs to be consistent with earlier work on other open clusters, specifically NGC 188, NGC 2420, and NGC 2477. We compare these open cluster fiducial sequences to stellar models by Baraffe et al. (1998), Siess et al. (2000), Girardi et al. (2000), and Yi et al. (2001) and find that the models are too blue in both B-V and V-I for stars below ~0.4 Mo. M35 contains stars to the limit of the extracted main sequence, at M ~ 0.10-0.15 Mo, suggesting that M35 may harbor a large number of brown dwarfs, which should be easy targets for near-IR instrumentation on 8-10m telescopes. We also identify a new candidate white dwarf in M35 at V = 21.36 +- 0.01. Depending on which WD models are used to interpret this cluster candidate, it is either a very high mass WD (1.05 +- 0.05 Mo) somewhat older (0.19-0.26 Gyr, 3-4 sigma) than our best isochrone age (150 Myr), or it is a modestly massive WD (0.67-0.78 Mo) much too old (0.42-0.83 Gyr) to belong to the cluster.Comment: 28 pages + 24 figures; to be published in the Sept, 2002 A

    Spectroscopic Evidence for Anisotropic S-Wave Pairing Symmetry in MgB2

    Get PDF
    Scanning tunneling spectroscopy of superconducting MgB2_2 (Tc=39T_c = 39 K) were studied on high-density pellets and c-axis oriented films. The sample surfaces were chemically etched to remove surface carbonates and hydroxides, and the data were compared with calculated spectra for all symmetry-allowed pairing channels. The pairing potential (Δk\Delta_k) is best described by an anisotropic s-wave pairing model, with Δk=Δxysin2θk+Δzcos2θk\Delta_k = \Delta_{xy} \sin ^2 \theta_k + \Delta_z \cos ^2 \theta_k, where θk\theta_k is the angle relative to the crystalline c-axis, Δz8.0\Delta_z \sim 8.0 meV, and Δxy5.0\Delta_{xy} \sim 5.0 meV.Comment: 4 pages and 3 figures. Submitted to Physical Review Letters. Corresponding author: Nai-Chang Yeh (e-mail: [email protected]

    Fluctuation Study of the Specific Heat of MgB2

    Full text link
    The specific heat of polycrystalline Mg11^{11}B2_{2} has been measured with high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The excess specific heat above Tc_{c} is discussed in terms of Gaussian fluctuations and suggests that Mg11^{11}B2_{2} is a bulk superconductor with Ginzburg-Landau coherence length ξ0=26\xi_{0}=26 \AA . The transition-width broadening in field is treated in terms of lowest-Landau-level (LLL) fluctuations. That analysis requires that ξ0=20\xi_{0}=20 \AA . The underestimate of the coherence length in field, along with deviations from 3D LLL predictions, suggest that there is an influence from the anisotropy of Bc2_{c2} between the c-axis and the a-b plane.Comment: Phys. Rev. B 66, 134515 (2002

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Full text link
    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.Comment: 5 pages, 3 figures. submitted to Phys. Rev.

    Pores in Bilayer Membranes of Amphiphilic Molecules: Coarse-Grained Molecular Dynamics Simulations Compared with Simple Mesoscopic Models

    Full text link
    We investigate pores in fluid membranes by molecular dynamics simulations of an amphiphile-solvent mixture, using a molecular coarse-grained model. The amphiphilic membranes self-assemble into a lamellar stack of amphiphilic bilayers separated by solvent layers. We focus on the particular case of tension less membranes, in which pores spontaneously appear because of thermal fluctuations. Their spatial distribution is similar to that of a random set of repulsive hard discs. The size and shape distribution of individual pores can be described satisfactorily by a simple mesoscopic model, which accounts only for a pore independent core energy and a line tension penalty at the pore edges. In particular, the pores are not circular: their shapes are fractal and have the same characteristics as those of two dimensional ring polymers. Finally, we study the size-fluctuation dynamics of the pores, and compare the time evolution of their contour length to a random walk in a linear potential

    Strongly correlated s-wave pairing in the n-type infinite-layer cuprate

    Get PDF
    Quasiparticle tunneling spectra of the electron-doped (n-type) infinite-layer cuprate Sr_{0.9}La_{0.1}CuO_2 reveal characteristics that counter a number of common phenomena in the hole-doped (p-type) cuprates. The optimally doped Sr_{0.9}La_{0.1}CuO_2 with T_c = 43 K exhibits a momentum-independent superconducting gap \Delta = 13.0 +- 1.0 meV that substantially exceeds the BCS value, and the spectral characteristics indicate insignificant quasiparticle damping by spin fluctuations and the absence of pseudogap. The response to quantum impurities in the Cu-sites also differs fundamentally from that of the p-type cuprates with d_{x^2-y^2}-wave pairing symmetry.Comment: 4 pages, 3 figures. Published in Physical Review Letter. Corresponding author: Nai-Chang Yeh (e-mail: [email protected]

    Coherence lengths and anisotropy in MgB2 superconductor

    Get PDF
    Field and temperature microwave measurements have been carried out on MgB2 thin film grown on Al2O3 substrate. The analysis reveals the mean field coherence length xi_{MF} in the mixed state and a temperature independent anisotropy ratio gamma_{MF} = xi_{MF}^{ab} / xi_{MF}^c approximately 2. At the superconducting transition, the scaling of the fluctuation conductivity yields the Ginzburg-Landau coherence length with a different anisotropy ratio gamma_{GL} = 2.8, also temperature independent.Comment: submitted to PR

    Invisible Higgs and Scalar Dark Matter

    Full text link
    In this proceeding, we show that when we combined WMAP and the most recent results of XENON100, the invisible width of the Higgs to scalar dark matter is negligible(<10%), except in a small region with very light dark matter (< 10 GeV) not yet excluded by XENON100 or around 60 GeV where the ratio can reach 50% to 60%. The new results released by the Higgs searches of ATLAS and CMS set very strong limits on the elastic scattering cross section.Comment: 4 pages, 2 figures, proceeding TAUP2011 References adde
    corecore