2,029 research outputs found
Precursors and Main-bursts of Gamma Ray Bursts in a Hypernova Scenario
We investigate a "hypernova" model for gamma-ray bursts (GRBs), i.e., massive
C+O star model with relativistic jets. In this model, non-thermal precursors
can be produced by the "first" relativistic shell ejected from the star. Main
GRBs are produced behind the "first"-shell by the collisions of several
relativistic shells. They become visible to distant observers after the
colliding region becomes optically thin. We examine six selected conditions
using relativistic hydrodynamical simulations and simple analyses.
Interestingly, our simulations show that sub-relativistic jets
from the central engine is sufficient to produce highly-relativistic shells. We find that the relativistic shells from such a star can
reproduce observed GRBs with certain conditions. Two conditions are especially
important. One is the sufficiently long duration of the central engine \gsim
100 sec. The other is the existence of a dense-shell somewhere behind the
"first"-shell. Under these conditions, both the existence and non-existence of
precursors, and long delay between precursors and main GRBs can be explained.Comment: 8 pages, 2 figures. Accepted for publication in the Astrophysical
Journal (Letters
Heavy Quark Diffusion and Lattice Correlators
We study charmonia correlators at finite temperature. We analyze to what
extent heavy quarkonia correlators are sensitive to the effect of heavy quark
transport and whether it is possible to constrain the heavy quark diffusion
constant by lattice calculations. Preliminary lattice calculations of quarkonia
correlators performed on anisotropic lattices show that they are sensitive to
the effect of heavy quark transport, but much detailed calculations are
required to constrain the value of the heavy quark diffusion constant.Comment: Based on talks presented on Lattice 2005, Extreme QCD 2005 and Quark
Matter 2005, 5 pages, 4 Figure
Neutrino emission in neutron matter from magnetic moment interactions
Neutrino emission drives neutron star cooling for the first several hundreds
of years after its birth. Given the low energy ( keV) nature of this
process, one expects very few nonstandard particle physics contributions which
could affect this rate. Requiring that any new physics contributions involve
light degrees of freedom, one of the likely candidates which can affect the
cooling process would be a nonzero magnetic moment for the neutrino. To
illustrate, we compute the emission rate for neutrino pair bremsstrahlung in
neutron-neutron scattering through photon-neutrino magnetic moment coupling. We
also present analogous differential rates for neutrino scattering off nucleons
and electrons that determine neutrino opacities in supernovae. Employing
current upper bounds from collider experiments on the tau magnetic moment, we
find that the neutrino emission rate can exceed the rate through neutral
current electroweak interaction by a factor two, signalling the importance of
new particle physics input to a standard calculation of relevance to neutron
star cooling. However, astrophysical bounds on the neutrino magnetic moment
imply smaller effects.Comment: 9 pages, 1 figur
Empirical Abundance Scaling Laws and Implications for the Gamma-Process in Core-Collapse Supernovae
Analyzing the solar system abundances, we have found two empirical abundance
scaling laws concerning the p- and s-nuclei with the same atomic number. The
first scaling is s/p ratios are almost constant over a wide range of the atomic
number, where the p-nculei are lighter than the s-nuclei by two or four
neutrons. The second scaling is p/p ratios are almost constant, where the
second -nuclei are lighter than the first p-nucleus by two neutrons. These
scalings are a piece of evidence that most p-nuclei are dominantly synthesized
by the gamma-process in supernova explosions. The scalings lead to a novel
concept of "universality of gamma-process" that the s/p and p/p ratios of
nuclei produced by individual gamma-processes are almost constant,
respectively. We have calculated the ratios by gamma-process based on
core-collapse supernova explosion models under various astrophysical conditions
and found that the scalings hold for materials produced by individual
gamma-processes independent of the astrophysical conditions assumed. The
universality originates from three mechanisms: the shifts of the gamma-process
layers to keep their peak temperature, the weak s-process in pre-supernovae,
and the independence of the s/p ratios of the nuclear reactions. The results
further suggest an extended universality that the s/p ratios in the
gamma-process layers are not only constant but also centered on a specific
value of 3. With this specific value and the first scaling, we estimate that
the ratios of -process abundance contributions from the AGB stars to the
massive stars are almost 6.7 for the -nuclei of A > 90. We find that large
enhancements of s/p ratios for Ce, Er, and W are a piece of evidence that the
weak s-process actually occurred before SNe.Comment: 35 pages, 15 figure
Electron spin resonance detected by a superconducting qubit
A new method for detecting the magnetic resonance of electronic spins at low
temperature is demonstrated. It consists in measuring the signal emitted by the
spins with a superconducting qubit that acts as a single-microwave-photon
detector, resulting in an enhanced sensitivity. We implement this new type of
electron-spin resonance spectroscopy using a hybrid quantum circuit in which a
transmon qubit is coupled to a spin ensemble consisting of NV centers in
diamond. With this setup we measure the NV center absorption spectrum at 30mK
at an excitation level of \thicksim15\,\mu_{B} out of an ensemble of 10^{11}
spins.Comment: 6 pages, 4 figures, submitted to PR
Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model
The full kinetic dynamics of a perpendicular collisionless shock is studied
by means of a one-dimensional electromagnetic full particle simulation. The
present simulation domain is taken in the shock rest frame in contrast to the
previous full particle simulations of shocks. Preliminary results show that the
downstream state falls into a unique cyclic reformation state for a given set
of upstream parameters through the self-consistent kinetic processes.Comment: 4 pages, 2 figures, published in "Earth, Planets and Space" (EPS),
the paper with full resolution images is
http://theo.phys.sci.hiroshima-u.ac.jp/~ryo/papers/shock_rest.pd
Evolution of 3-9 Mo Stars for Z=0.001 - 0.03 and Metallicity Effects on Type Ia Supernovae
Recent observations have revealed that Type Ia supernovae (SNe Ia) are not
perfect standard candles but show some variations in their absolute magnitudes,
light curve shapes, and spectra. The C/O ratio in the SNe Ia progenitors (C-O
white dwarfs) may be related to this variation. In this work, we systematically
investigate the effects of stellar mass (M) and metallicity (Z) on the C/O
ratio and its distribution in the C-O white dwarfs by calculating stellar
evolution from the main-sequence through the end of the second dredge-up for
M=3-9 Mo and Z=0.001-0.03. We find that the total carbon mass fraction just
before SN Ia explosion varies in the range 0.36 -- 0.5. We also calculate the
metallicity dependence of the main-sequence-mass range of the SN Ia progenitor
white dwarfs. Our results show that the maximum main-sequence mass to form C-O
white dwarfs decreases significantly toward lower metallicity, and the number
of SN Ia progenitors may be underestimated if metallicity effectis neglected.
We discuss the implications of these results on the variation of SNe Ia,
determination of cosmological parameters, luminosity function of white dwarfs,
and the galactic chemical evolution.Comment: Added references and corrected typos. To appear in the Astrophysical
Journal 1999 March 10 issu
The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances
The first stars in the Universe are predicted to have been much more massive
than the Sun. Gravitational condensation accompanied by cooling of the
primordial gas due to molecular hydrogen, yields a minimum fragmentation scale
of a few hundred solar masses. Numerical simulations indicate that once a gas
clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction
without further fragmentation. Here we show that as soon as the primordial gas
- left over from the Big Bang - is enriched by supernovae to a carbon or oxygen
abundance as small as ~0.01-0.1% of that found in the Sun, cooling by
singly-ionized carbon or neutral oxygen can lead to the formation of low-mass
stars. This mechanism naturally accommodates the discovery of solar mass stars
with unusually low (10^{-5.3} of the solar value) iron abundance but with a
high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early
epochs is partially regulated by the temperature of the cosmic microwave
background. The derived critical abundances can be used to identify those
metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by
the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature
- …
