2,505 research outputs found

    An Introduction to Hyperbolic Barycentric Coordinates and their Applications

    Full text link
    Barycentric coordinates are commonly used in Euclidean geometry. The adaptation of barycentric coordinates for use in hyperbolic geometry gives rise to hyperbolic barycentric coordinates, known as gyrobarycentric coordinates. The aim of this article is to present the road from Einstein's velocity addition law of relativistically admissible velocities to hyperbolic barycentric coordinates along with applications.Comment: 66 pages, 3 figure

    Optimised Fabry-Perot (AlGa)As quantum well lasers tunable over 105 nm

    Get PDF
    Uncoated, Fabry-Perot (AlGa)As semiconductor lasers are tuned over 105nm in a grating-coupled external cavity. Broadband tunability is achieved by optimising the resonator loss so as to invoke lasing from both the first and second quantised states of the single quantum well active region

    Gyrations: The Missing Link Between Classical Mechanics with its Underlying Euclidean Geometry and Relativistic Mechanics with its Underlying Hyperbolic Geometry

    Full text link
    Being neither commutative nor associative, Einstein velocity addition of relativistically admissible velocities gives rise to gyrations. Gyrations, in turn, measure the extent to which Einstein addition deviates from commutativity and from associativity. Gyrations are geometric automorphisms abstracted from the relativistic mechanical effect known as Thomas precession

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.

    Get PDF
    The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals

    The geometry of entanglement: metrics, connections and the geometric phase

    Full text link
    Using the natural connection equivalent to the SU(2) Yang-Mills instanton on the quaternionic Hopf fibration of S7S^7 over the quaternionic projective space HP1S4{\bf HP}^1\simeq S^4 with an SU(2)S3SU(2)\simeq S^3 fiber the geometry of entanglement for two qubits is investigated. The relationship between base and fiber i.e. the twisting of the bundle corresponds to the entanglement of the qubits. The measure of entanglement can be related to the length of the shortest geodesic with respect to the Mannoury-Fubini-Study metric on HP1{\bf HP}^1 between an arbitrary entangled state, and the separable state nearest to it. Using this result an interpretation of the standard Schmidt decomposition in geometric terms is given. Schmidt states are the nearest and furthest separable ones lying on, or the ones obtained by parallel transport along the geodesic passing through the entangled state. Some examples showing the correspondence between the anolonomy of the connection and entanglement via the geometric phase is shown. Connections with important notions like the Bures-metric, Uhlmann's connection, the hyperbolic structure for density matrices and anholonomic quantum computation are also pointed out.Comment: 42 page

    Optimization of cw sodium laser guide star efficiency

    Full text link
    Context: Sodium laser guide stars (LGS) are about to enter a new range of laser powers. Previous theoretical and numerical methods are inadequate for accurate computations of the return flux and hence for the design of the next-generation LGS systems. Aims: We numerically optimize the cw (continuous wave) laser format, in particular the light polarization and spectrum. Methods: Using Bloch equations, we simulate the mesospheric sodium atoms, including Doppler broadening, saturation, collisional relaxation, Larmor precession, and recoil, taking into account all 24 sodium hyperfine states and on the order of 100 velocity groups. Results: LGS return flux is limited by "three evils": Larmor precession due to the geomagnetic field, atomic recoil due to radiation pressure, and transition saturation. We study their impacts and show that the return flux can be boosted by repumping (simultaneous excitation of the sodium D2a and D2b lines with 10-20% of the laser power in the latter). Conclusions: We strongly recommend the use of circularly polarized lasers and repumping. As a rule of thumb, the bandwidth of laser radiation in MHz (at each line) should approximately equal the launched laser power in Watts divided by six, assuming a diffraction-limited spot size.Comment: 15 pages, 12 figures, to be published in Astronomy & Astrophysics, AA/2009/1310
    corecore