184 research outputs found
Exploring Conventional Approaches for Color Image Denoising: A Comparative Study
Image denoising plays a critical role in enhancing the quality of digital images by removing unwanted noise while preserving important image details. Among various noise types, color image denoising presents unique challenges due to the complex correlation between color channels. This paper explores conventional denoising approaches specifically tailored for color images, focusing on well-established techniques such as median filtering, Gaussian smoothing, bilateral filtering, Non-Local Means (NLM), and wavelet-based denoising. Each method is analyzed for its effectiveness in suppressing noise while maintaining image integrity. We perform a comparative study to evaluate the performance of these techniques across different noise models, including Gaussian, salt-and-pepper, and speckle noise. Objective metrics such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE) are used to assess image quality post-denoising. Our results highlight the strengths and limitations of each method, offering insights into which conventional approaches are most suitable for specific noise types and image content. This comparative analysis serves as a foundation for further research and development of advanced denoising techniques
Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency
Citation: Serba, D. D., Uppalapati, S. R., Krom, N., Mukherjee, S., Tang, Y. H., Mysore, K. S., & Saha, M. C. (2016). Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. Bmc Genomics, 17, 14. doi:10.1186/s12864-016-3377-8Background: Switchgrass, a warm-season perennial grass studied as a potential dedicated biofuel feedstock, is classified into two main taxa - lowland and upland ecotypes - that differ in morphology and habitat of adaptation. But there is limited information on their inherent molecular variations. Results: Transcriptome analysis by RNA-sequencing (RNA-Seq) was conducted for lowland and upland ecotypes to document their gene expression variations. Mapping of transcriptome to the reference genome (Panicum virgatum v1. 1) revealed that the lowland and upland ecotypes differ substantially in sets of genes transcribed as well as levels of expression. Differential gene expression analysis exhibited that transcripts related to photosynthesis efficiency and development and photosystem reaction center subunits were upregulated in lowlands compared to upland genotype. On the other hand, catalase isozymes, helix-loop-helix, late embryogenesis abundant group I, photosulfokinases, and S-adenosyl methionine synthase gene transcripts were upregulated in the upland compared to the lowlands. At >= 100x coverage and >= 5% minor allele frequency, a total of 25,894 and 16,979 single nucleotide polymorphism (SNP) markers were discovered for VS16 (upland ecotype) and K5 (lowland ecotype) against the reference genome. The allele combination of the SNPs revealed that the transition mutations are more prevalent than the transversion mutations. Conclusions: The gene ontology (GO) analysis of the transcriptome indicated lowland ecotype had significantly higher representation for cellular components associated with photosynthesis machinery controlling carbon fixation. In addition, using the transcriptome data, SNP markers were detected, which were distributed throughout the genome. The differentially expressed genes and SNP markers detected in this study would be useful resources for traits mapping and gene transfer across ecotypes in switchgrass breeding for increased biomass yield for biofuel conversion
Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes
Citation: Ohta, N., Ishiguro, S., Kawabata, A., Uppalapati, D., Pyle, M., Troyer, D., . . . Tamura, M. (2015). Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes. Plos One, 10(5), 17. doi:10.1371/journal.pone.0123756Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naive UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression
A New Large Scale SVM for Classification of Imbalanced Evolving Streams
Classification from imbalanced evolving streams possesses a combined challenge of class imbalance and concept drift (CI-CD). However, the state of imbalance is dynamic, a kind of virtual concept drift. The imbalanced distributions and concept drift hinder the online learner’s performance as a combined or individual problem. A weighted hybrid online oversampling approach,”weighted online oversampling large scale support vector machine (WOOLASVM),” is proposed in this work to address this combined problem. The WOOLASVM is an SVM active learning approach with new boundary weighing strategies such as (i) dynamically oversampling the current boundary and (ii) dynamic weighing of the cost parameter of the SVM objective function. Thus at any time step, WOOLASVM maintains balanced class distributions so that the CI-CD problem does not hinder the online learner performance. Over extensive experiments on synthetic and real-world streams with the static and dynamic state of imbalance, the WOOLASVM exhibits better online classification performances than other state-of-the-art methods
Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass
Abstract
Background
Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass.
Results
In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated.
Conclusions
Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop
Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid
Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome
A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000
Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection
Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici
The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin
Long-Term Storage of Surface-Adsorbed Protein Machines
The effective and simple long-term storage of complex functional proteins is critical in achieving commercially viable biosensors. This issue is particularly challenging in recently proposed types of nanobiosensors, where molecular-motor-driven transportation substitutes microfluidics and forms the basis for novel detection schemes. Importantly, therefore, we here describe that delicate heavy meromyosin (HMM)-based nanodevices (HMM motor fragments adsorbed to silanized surfaces and actin bound to HMM) fully maintain their function when stored at -20 degrees C for more than a month. The mechanisms for the excellent preservation of acto-HMM motor function upon repeated freeze thaw cycles are discussed. The results are important to the future commercial implementation of motor-based nanodevices and are of more general value to the long-term storage of any protein-based bionanodevice.</p
Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq
- …
