1,610 research outputs found
Supercurrent Spectroscopy of Andreev States
We measure the excitation spectrum of a superconducting atomic contact. In
addition to the usual continuum above the superconducting gap, the single
particle excitation spectrum contains discrete, spin-degenerate Andreev levels
inside the gap. Quasiparticle excitations are induced by a broadband on-chip
microwave source and detected by measuring changes in the supercurrent flowing
through the atomic contact. Since microwave photons excite quasiparticles in
pairs, two types of transitions are observed: Andreev transitions, which
consists of putting two quasiparticles in an Andreev level, and transitions to
odd states with a single quasiparticle in an Andreev level and the other one in
the continuum. In contrast to absorption spectroscopy, supercurrent
spectroscopy allows detection of long-lived odd states.Comment: typos correcte
Exciting Andreev pairs in a superconducting atomic contact
The Josephson effect describes the flow of supercurrent in a weak link, such
as a tunnel junction, nanowire, or molecule, between two superconductors. It is
the basis for a variety of circuits and devices, with applications ranging from
medicine to quantum information. Currently, experiments using Josephson
circuits that behave like artificial atoms are revolutionizing the way we probe
and exploit the laws of quantum physics. Microscopically, the supercurrent is
carried by Andreev pair states, which are localized at the weak link. These
states come in doublets and have energies inside the superconducting gap.
Existing Josephson circuits are based on properties of just the ground state of
each doublet and so far the excited states have not been directly detected.
Here we establish their existence through spectroscopic measurements of
superconducting atomic contacts. The spectra, which depend on the atomic
configuration and on the phase difference between the superconductors, are in
complete agreement with theory. Andreev doublets could be exploited to encode
information in novel types of superconducting qubits.Comment: Submitted to Natur
Phase controlled superconducting proximity effect probed by tunneling spectroscopy
Using a dual-mode STM-AFM microscope operating below 50mK we measured the
Local Density of States (LDoS) along small normal wires connected at both ends
to superconductors with different phases. We observe that a uniform minigap can
develop in the whole normal wire and in the superconductors near the
interfaces. The minigap depends periodically on the phase difference. The
quasiclassical theory of superconductivity applied to a simplified 1D model
geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter
Theory of microwave spectroscopy of Andreev bound states with a Josephson junction
We present a microscopic theory for the current through a tunnel Josephson
junction coupled to a non-linear environment, which consists of an Andreev
two-level system coupled to a harmonic oscillator. It models a recent
experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499,
312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting
atomic-size contact. We find the eigenenergies and eigenstates of the
environment and derive the current through the junction due to inelastic Cooper
pair tunneling. The current-voltage characteristic reveals the transitions
between the Andreev bound states, the excitation of the harmonic mode that
hybridizes with the Andreev bound states, as well as multi-photon processes.
The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure
Transfer of Sulfur from IscS to IscU during Fe/S Cluster Assembly
The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [35S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of 35S from [35S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (Kd ~2 µM) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and 35S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta 376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer 35S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta 376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU
Evidence for long-lived quasiparticles trapped in superconducting point contacts
We have observed that the supercurrent across phase-biased, highly
transmitting atomic size contacts is strongly reduced within a broad phase
interval around {\pi}. We attribute this effect to quasiparticle trapping in
one of the discrete sub-gap Andreev bound states formed at the contact.
Trapping occurs essentially when the Andreev energy is smaller than half the
superconducting gap {\Delta}, a situation in which the lifetime of trapped
quasiparticles is found to exceed 100 \mus. The origin of this sharp energy
threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be
published in Physical Review Letter
Ontology-Based Data Access and Integration
An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates.
In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used
Dynamics of quasiparticle trapping in Andreev levels
We present a theory describing the trapping and untrapping of quasiparticles
in the Andreev bound level of a single-channel weak link between two
superconductors. We calculate the rates of the transitions between even and odd
occupations of the Andreev level induced by absorption and emission of both
photons and phonons. We apply the theory to a recent experiment [Phys. Rev.
Lett. 106, 257003 (2011)] in which the dynamics of the trapping of
quasiparticles in the Andreev levels of superconducting atomic contacts coupled
to a Josephson junction was measured. We show that the plasma energy
of the Josephson junction defines a rather abrupt transition between a fast
relaxation regime dominated by coupling to photons and a slow relaxation regime
dominated by coupling to phonons. With realistic parameters the theory provides
a semi-quantitative description of the experimental results.Comment: 11 pages, 9 figures. Accepted for publication in Physical Review
Manipulating the Quantum State of an Electrical Circuit
We have designed and operated a superconducting tunnel junction circuit that
behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its
quantum state can be programmed with a series of microwave pulses, and a
projective measurement of the state can be performed by a pulsed readout
sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is
sufficiently high that a solid-state quantum processor based on this type of
circuit can be envisioned.Comment: 4 figures include
Electron transport through a metal-molecule-metal junction
Molecules of bisthiolterthiophene have been adsorbed on the two facing gold
electrodes of a mechanically controllable break junction in order to form
metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have
been recorded at room temperature. Zero bias conductances were measured in the
10-100 nS range and different kinds of non-linear I-V curves with step-like
features were reproducibly obtained. Switching between different kinds of I-V
curves could be induced by varying the distance between the two metallic
electrodes. The experimental results are discussed within the framework of
tunneling transport models explicitly taking into account the discrete nature
of the electronic spectrum of the molecule.Comment: 12 pages, 12 figures to appear in Phys. Rev. B 59(19) 199
- …
