2,229 research outputs found
An institutional sociology perspective of the implementation of activity based costing by Spanish health care institutions
According to institutional sociology, hospitals will respond to external environmental pressures and adopt Activity-Based-Costing (ABC). This theory overemphasizes conformity and fails to consider the advantages of organizational non-conformance. A conflict of interests between physicians and management leads to physician resistance to accepting ABC. This paper investigates the Spanish government's response to this resistance by creating new public foundation hospitals, and involves a case study of the Alcorcón foundation hospital. Population ecology is offered as an explanation for the emergence of new entities as a result of inert existing entities' resistance to reform.Activity based costing; ABC implementation; Health care; Institutional sociology; Spanish health care sector;
The Relation between the Mandelstam and the Cayley-Hamilton Identities
Starting from the characteristic polynomial for ordinary matrices we give a
combinatorial deduction of the Mandelstam identities and viceversa, thus
showing that the two sets of relations are equivalent. We are able to extend
this construction to supermatrices in such a way that we obtain the Mandelstam
identities in this case, once the corresponding characteristic equation is
known.Comment: latex file, 16 pages, preprint ICN-UNAM -93 -#1
Exact solution of the Schr\"{o}dinger equation for an hydrogen atom at the interface between the vacuum and a topologically insulating surface
When an hydrogen atom is brought near to the interface between
-media, the quantum-mechanical motion of the electron will be affected
by the electromagnetic interaction between the atomic charges and the
-interface, which is described by an axionic extension of Maxwell
electrodynamics in the presence of a boundary. In this paper we investigate the
atom-surface interaction effects upon the energy levels and wave functions of
an hydrogen atom placed at the interface between a -medium and the
vacuum. In the approximation considered, the Schr\"{o}dinger equation can be
exactly solved by separation of variables in terms of hypergeometic functions
for the angular part and hydrogenic functions for the radial part. In order to
make such effects apparent we deal with unrealistic high values of the
-parameter. We also compute the energy shifts using perturbation theory
for a particular small value of and we demonstrate that they are in a
very good agreement with the ones obtained from the exact solution.Comment: 20 pages, 17 figures, 6 tables, Accepted for publication in the
European Physics Journal
On k-Convex Polygons
We introduce a notion of -convexity and explore polygons in the plane that
have this property. Polygons which are \mbox{-convex} can be triangulated
with fast yet simple algorithms. However, recognizing them in general is a
3SUM-hard problem. We give a characterization of \mbox{-convex} polygons, a
particularly interesting class, and show how to recognize them in \mbox{} time. A description of their shape is given as well, which leads to
Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex
sets. Finally, we introduce the concept of generalized geometric permutations,
and show that their number can be exponential in the number of
\mbox{-convex} objects considered.Comment: 23 pages, 19 figure
Quantization of the Myers-Pospelov model: the photon sector interacting with standard fermions as a perturbation of QED
We study the quantization of the electromagnetic sector of the Myers-Pospelov
model coupled to standard fermions. Our main objective, based upon experimental
and observational evidence, is to construct an effective theory which is a
genuine perturbation of QED, such that setting zero the Lorentz invariance
violation parameters will reproduce it. To this end we provide a physically
motivated prescription, based on the effective character of the model,
regarding the way in which the model should be constructed and how the QED
limit should be approached. This amounts to the introduction of an additional
coarse-graining physical energy scale , under which we can trust the
effective field theory formulation. The prescription is successfully tested in
the calculation of the Lorentz invariance violating contributions arising from
the electron self-energy. Such radiative corrections turn out to be properly
scaled by very small factors for any reasonable values of the parameters and no
fine-tuning problems are found. Microcausality violations are highly suppressed
and occur only in a space-like region extremely close to the light-cone. The
stability of the model is guaranteed by restricting to concordant frames
satisfying .Comment: 24 pages, revtex, no figure
The scalar sector in the Myers-Pospelov model
We construct a perturbative expansion of the scalar sector in the
Myers-Pospelov model, up to second order in the Lorentz violating parameter and
taking into account its higher-order time derivative character. This expansion
allows us to construct an hermitian positive-definite Hamiltonian which
provides a correct basis for quantization. Demanding that the modified normal
frequencies remain real requires the introduction of an upper bound in the
magnitude |k| of the momentum, which is a manifestation of the effective
character of the model. The free scalar propagator, including the corresponding
modified dispersion relations, is also calculated to the given order, thus
providing the starting point to consider radiative corrections when
interactions are introduced.Comment: Published in AIP Conf.Proc.977:214-223,200
Spectral energy distributions of quasars selected in the mid-infrared
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected
in the mid-infrared. Our quasar selection finds objects ranging in extinction
from highly obscured, type-2 quasars, through more lightly reddened type-1
quasars and normal type-1s. We find a weak tendency for the objects with the
highest far-infrared emission to be obscured quasars, but no bulk systematic
offset between the far-infrared properties of dusty and normal quasars as might
be expected in the most naive evolutionary schemes. The hosts of the type-2
quasars have stellar masses comparable to those of radio galaxies at similar
redshifts. Many of the type-1s, and possibly one of the type-2s require a very
hot dust component in addition to the normal torus emission.Comment: 4 pages, 2 figures, to appear in the proceedings of The Spectral
Energy Distribution of Galaxies, Preston, September 2011, eds R.J. Tuffs &
C.C. Popesc
Real sector of the nonminimally coupled scalar field to self-dual gravity
A scalar field nonminimally coupled to gravity is studied in the canonical
framework, using self-dual variables. The corresponding constraints are first
class and polynomial. To identify the real sector of the theory, reality
conditions are implemented as second class constraints, leading to three real
configurational degrees of freedom per space point. Nevertheless, this
realization makes non-polynomial some of the constraints. The original complex
symplectic structure reduces to the expected real one, by using the appropriate
Dirac brackets. For the sake of preserving the simplicity of the constraints,
an alternative method preventing the use of Dirac brackets, is discussed. It
consists of converting all second class constraints into first class by adding
extra variables. This strategy is implemented for the pure gravity case.Comment: Latex file, 22 pages, no figure
NGC 2782: a merger remnant with young stars in its gaseous tidal tail
We have searched for young star-forming regions around the merger remnant NGC
2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources,
located at distances greater than 26 kpc from the center of NGC 2782, and
coinciding with its western HI tidal tail. These regions were resolved in
several smaller systems when Gemini/GMOS r-band images were used. We compared
the observed colors to stellar population synthesis models and we found that
these objects have ages of ~1 to 11 Myr and masses ranging from 10^3.9 to
10^4.6 Msun. By using Gemini/GMOS spectroscopic data we confirm memberships and
derive high metallicities for three of the young regions in the tail
(12+log(O/H)=8.74\pm0.20, 8.81\pm0.20 and 8.78\pm0.20). These metallicities are
similar to the value presented by the nuclear region of NGC 2782 and also
similar to the value presented for an object located close to the main body of
NGC 2782. The high metallicities measured for the star-forming regions in the
gaseous tidal tail of NGC 2782 could be explained if they were formed out of
highly enriched gas which was once expelled from the center of the merging
galaxies when the system collided. An additional possibility is that the tail
has been a nursery of a few generations of young stellar systems which
ultimately polluted this medium with metals, further enriching the already
pre-enriched gas ejected to the tail when the galaxies collided.Comment: 11 pages, 5 figures. Accepted for publication in MNRA
- …
