14 research outputs found
Chondrocytic Potential of Allogenic Mesenchymal Stem Cells Transplanted without Immunosuppression to Regenerate Physeal Defect in Rabbits
Mesenchymal stem cells (MSCs) from bone marrow are multipotent cells capable of forming cartilage, bone, and other connective tissues. The objective of this study was to determine whether the use of allogenic mesenchymal stem cells could functionally heal a defect in the distal femoral physis in rabbits without the use of immunosuppressive therapy. A iatrogenic defect was created in the lateral femoral condyle of thirty-two New Zealand white rabbits, 7 weeks old, weighing 2.25 ± 0.24 kg. Each defect, 3.5 mm in width and 12 mm in length, in the right distal femoral physis was treated with allogenic mesenchymal stem cells in new composite hyaluronate/collagen type I/fibrin scaffold. The healing response was evaluated radiographically, by MRI (three weeks and four months after implantation) and also histologically, by Pearl’s reaction and with immunofluorescence (four months after implantation). The results were compared with the data for the control defects (without stem cell implantation) in left distal femoral physes. On average, right femurs with a damaged distal physis and transplanted MSCs grew more in length (0.55 ± 0.21 cm) compared with left femurs with a physeal defect without stem cell transplantation (0.46 ± 0.23 cm). Valgus deformity of right femurs with a physeal defect and transplanted MSCs was mild (0.2 ± 0.1 °). On the contrary, left femurs with a physeal defect without transplanted MSCs showed a significant valgus deformity (2.7 ± 1.6 °). For defects treated with allogenic mesenchymal stem cell implants, no adverse immune response and implant rejection were detected in this model. Histologically, no lymphocytic infiltration occurred. At four months after transplantation, hyaline cartilage had formed throughout the defects treated with allogenic MSCs. Labelled mesenchymal stem cells/differentiated chondrocytes were detected in the physeal defects based on magnetic resonance imaging and immunofluorescence. The results of this study demonstrated that allogenic mesenchymal stem cells in a new composite hyaluronate/collagen type I/fibrin scaffold repaired iatrogenic defects in the distal femoral physes in rabbits without the use of immunosuppressive therapy. The use of allogenic mesenchymal stem cells for the repair of physeal defects may be an alternative to autologous MSCs transplantation. An allogenic approach would enable mesenchymal stem cells to be isolated from any donor, providing a readily available source of cells for cartilage tissue repair
Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells
Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations
Cellular therapies for treating pain associated with spinal cord injury
Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing
Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions
Blood fate in therapy of the temporomandibular joint hypermobility using an injection of autologous blood
Permanent jugular catheterization in miniature pig: treatment, clinical and pathological observatio
Use of 3D geometry modelling of osteochondrosis-like iatrogenic lesions as a template for press-and-fit scaffold seeded with mesenchymal stem cells
Computed tomography (CT) is an effective diagnostic modality for three-dimensional imaging of bone structures, including the geometry of their defects. The aim of the study was to create and optimize 3D geometrical and real plastic models of the distal femoral component of the knee with joint surface defects. Input data included CT images of stifle joints in twenty miniature pigs with iatrogenic osteochondrosis-like lesions in medial femoral condyle of the left knee. The animals were examined eight and sixteen weeks after surgery. Philips MX 8000 MX and View workstation were used for scanning parallel plane cross section slices and Cartesian discrete volume creation. On the average, 100 slices were performed in each stifle joint. Slice matrices size was 512 x 512 with slice thickness of 1 mm. Pixel (voxel) size in the slice plane was 0.5 mm (with average accuracy of +/-0.5 mm and typical volume size 512 x 512 x 100 voxels). Three-dimensional processing of CT data and 3D geometrical modelling, using interactive computer graphic system MediTools formerly developed here, consisted of tissue segmentation (raster based method combination and 5 % of manual correction), vectorization by the marching-cubes method, smoothing and decimation. Stifle- joint CT images of three individuals of different body size (small, medium and large) were selected to make the real plastic models of their distal femurs from plaster composite using rapid prototyping technology of Zcorporation. Accuracy of the modeling was +/- 0.5 mm. The real plastic models of distal femurs can be used as a template for developing custom made press and fit scaffold implants seeded with mesenchymal stem cells that might be subsequently implanted into iatrogenic joint surface defects for articular cartilage-repair enhancement.</jats:p
Composite hyaluronate-type I collagen-fibrin scaffold in the therapy of osteochondral defects in miniature pigs
The potential of novel scaffold containing sodium hyaluronate, type I collagen, and fibrin was investigated in the regeneration of osteochondral defects in miniature pigs. Both autologous chondrocyte-seeded scaffolds and non-seeded scaffolds were implanted into two defects located in the non-weight-bearing zone of the femoral trochlea (defect A was located more distally and medially, defect B was located more proximally and laterally). Control defects were left untreated. Twelve weeks after the operation, the knees were evaluated in vivo using MRI. Six months after the implantation, the defects were analyzed using MRI, histological, and immunohistochemical analysis. In the A defects of chondrocyte-seeded scaffold group, hyaline cartilage and fibrocartilage was formed, containing type II collagen, acidic and neutral glycosaminoglycans while the non-seeded scaffold group was predominantly filled with fibrocartilage. Defects in the control group were predominantly filled with fibrous tissue. Histomorphometric analysis of photomicrographs revealed a significantly higher amount of hyaline cartilage in the cell-seeded scaffold group in A defects than in other groups. Both scaffold groups in A defects showed significantly less fibrous tissue than cell-seeded defects B and the control group. Both histological and MRI analysis proved that the novel composite scaffold has a potential to regenerate osteochondral defects within six months.</jats:p
