463 research outputs found
Charmed meson decay constants in three-flavor lattice QCD
We present the first lattice QCD calculation with realistic sea quark content
of the D^+ meson decay constant f_{D^+}. We use the MILC Collaboration's
publicly available ensembles of lattice gauge fields, which have a quark sea
with two flavors (up and down) much lighter than a third (strange). We obtain
f_{D^+} = 201 +/- 3 +/- 17 MeV, where the errors are statistical and a
combination of systematic errors. We also obtain f_{D_s} = 249 +/- 3 +/- 16 MeV
for the D_s meson.Comment: note added on recent CLEO measurement; PRL versio
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
Spatial Processes Decouple Management from Objectives in a Heterogeneous Landscape: Predator Control as a Case Study
Predator control is often implemented with the intent of disrupting top‐down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top‐down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south‐central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi‐level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large‐scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large‐scale experimental framework where spatial context is likely an important driver of outcomes
Assessment of Gas-Surface Interaction Models for Computation of Rarefied Hypersonic Flow
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76727/1/AIAA-36375-113.pd
B4: Study of Cytokine Profile in Oral Submucous Fibrosis Tissues: Unveiling a Novel Pathogenesis
Potential for Post-Fire Recovery of Greater Sage-Grouse Habitat
In the western United States, fire has become a significant concern in the management of big sagebrush (Artemisia tridentata Nutt.) ecosystems. This is due to large‐scale increases in cover of the fire‐prone invasive annual cheatgrass (Bromus tectorum L.) and, concurrently, concerns about declining quantity and quality of habitat for Greater Sage‐grouse (Centrocercus urophasianus). The prevailing paradigm is that fire results in a loss of sage‐grouse habitat on timescales relevant to conservation planning (i.e., 1–20 yr), since sagebrush cover can take many more years to recover post‐fire. However, fire can have effects that improve sage‐grouse habitat, including stimulating perennial grass and forb production. The conditions under which fire results in the permanent loss or enhancement of sage‐grouse habitat are not well understood. We used long‐term data from the Utah Division of Wildlife Resources Range Trend Project to assess short‐term (1–4 yr post‐treatment) and long‐term (6–10 yr post‐treatment) effects of fire on vegetation cover at 16 sites relative to sage‐grouse habitat vegetation guidelines. Sagebrush cover remained low post‐fire at sites considered historically unsuitable for sage‐grouse (10%) pre‐fire sagebrush cover, sagebrush cover decreased to10% cover. Post‐fire sagebrush cover was positively related to elevation. Across all sites, perennial grasses and forbs increased in cover to approximately meet the habitat vegetation guidelines for sage‐grouse. Cheatgrass cover did not change in response to fire, and increased perennial grass cover appears to have played an important role in suppressing cheatgrass. Our results indicate that, while fire poses a potential risk for sage‐grouse habitat loss and degradation, burned sites do not necessarily need to be considered permanently altered, especially if they are located at higher elevation, have high sagebrush cover pre‐fire, and are reseeded with perennial grasses and forbs post‐fire. However, our results confirm that fire at more degraded sites, for example, those wit
Recommended from our members
Techniques of the FLASH Thin Target Experiment
The fluorescence yield in air is reported for wavelength and pressure ranges of interest to ultra-high energy cosmic ray detectors. A 28.5 GeV electron beam was used to excite the fluorescence. Central to the approach was the system calibration, using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air, at 304 K the yield is 20.8 {+-} 1.6 photons per MeV
- …
