49,942 research outputs found

    Algorithm for Liapunov stability analysis

    Get PDF
    Development of algorithm provides automatic computation of quadratic estimate of domain of stability for stable equilibrium states of nonlinear systems of ordinary differential equations

    Lick Slit Spectra of Thirty-Eight Objective Prism QSO Candidates and Low Metallicity Halo Stars

    Get PDF
    We present Lick Observatory slit spectra of 38 objects which were claimed to have pronounced ultraviolet excess and emission lines by Zhan \& Chen. Most of our spectra have FWHM spectral resolutions of about 4~\AA , and relatively high S/N of about 10 -- 50, although some have FWHM 15\simeq 15~\AA ~or lower S/N. We find eleven QSOs, four galaxies at z0.1z \simeq 0.1, twenty-two stars and one unidentified object with a low S/N spectrum. Six of the QSOs show absorption systems, including Q0000+027A with a relatively strong associated C~IV absorption system, and Q0008+008 (V18.9\simeq 18.9) with a damped Lyα\alpha system with an H~I column density of 102110^{21} cm2^{-2}. The stars include a wide variety of spectral types. There is one new DA4 white dwarf at 170~pc, one sdB at 14~kpc, and three M stars. The rest are of types F, G and K. We have measured the equivalent widths of the Ca~II~K line, the G-band and the Balmer lines in ten stars with the best spectra, and we derive metallicities. Seven of them are in the range 2.5-2.5 \leq~[Fe/H]~1.7\leq -1.7, while the others are less metal poor. If the stars are dwarfs, then they are at distances of 1 to 7~kpc, but if they are giants, typical distances will be about 10~kpc.Comment: (Plain Tex, 21 pages, including tables. Send email to 'travell_oir%[email protected]' for 12 pages of figures) To appear in the %%Astronomical Journal, August, 199

    The signature of a double quantum-dot structure in the I-V characteristics of a complex system

    Full text link
    We demonstrate that by carefully analyzing the temperature dependent characteristics of the I-V measurements for a given complex system it is possible to determine whether it is composed of a single, double or multiple quantum-dot structure. Our approach is based on the orthodox theory for a double-dot case and is capable of simulating I-V characteristics of systems with any resistance and capacitance values and for temperatures corresponding to thermal energies larger than the dot level spacing. We compare I-V characteristics of single-dot and double-dot systems and show that for a given measured I-V curve considering the possibility of a second dot is equivalent to decreasing the fit temperature. Thus, our method allows one to gain information about the structure of an experimental system based on an I-V measurement.Comment: 12 pages 7 figure

    Further development of an algorithm for the nonlinear stability analysis of the orbiting astronomical observatory paired-tracker control system Final report

    Get PDF
    Algorithm development for estimating domain of attraction of OAO paired-tracker equilibrium state with Liapunov function

    Parametric Evolution for a Deformed Cavity

    Full text link
    We consider a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) describes a particle moving inside a cavity, and x controls a deformation of the boundary. The quantum-eigenstates of the system are |n(x)>. We describe how the parametric kernel P(n|m) = , also known as the local density of states, evolves as a function of x-x0. We illuminate the non-unitary nature of this parametric evolution, the emergence of non-perturbative features, the final non-universal saturation, and the limitations of random-wave considerations. The parametric evolution is demonstrated numerically for two distinct representative deformation processes.Comment: 13 pages, 8 figures, improved introduction, to be published in Phys. Rev.

    Diffractive energy spreading and its semiclassical limit

    Full text link
    We consider driven systems where the driving induces jumps in energy space: (1) particles pulsed by a step potential; (2) particles in a box with a moving wall; (3) particles in a ring driven by an electro-motive-force. In all these cases the route towards quantum-classical correspondence is highly non-trivial. Some insight is gained by observing that the dynamics in energy space, where nn is the level index, is essentially the same as that of Bloch electrons in a tight binding model, where nn is the site index. The mean level spacing is like a constant electric field and the driving induces long range hopping 1/(n-m).Comment: 19 pages, 11 figs, published version with some improved figure

    Improving the Functional Control of Aged Ferroelectrics using Insights from Atomistic Modelling

    Get PDF
    We provide a fundamental insight into the microscopic mechanisms of the ageing processes. Using large scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3, we demonstrate that the experimentally observed ageing phenomena can be reproduced from intrinsic interactions of defect-dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.Comment: 6 pages, 3 figure
    corecore