5,570 research outputs found
Granular Pressure In A Liquid Fluidized Bed
The granular temperature and pressure underpins the kinetic theory of granular flows while they also playing an increasing role in other context such as modeling heat transfer, segregation, erosion, attrition and aggregation in various granular processing technologies. The validation of these theories demands experimental determination of these quantities. Diffusing wave spectroscopy (DWS) is a well established technique for measurement of granular temperature in dense granular systems. Using the dense kinetic theory expression, we derive the granular pressure from DWS data for the first time. The determined mean granular pressure variation with solid volume fraction in a liquid fluidized bed is compared with theoretical and simulation models as well as with previous experimental results. Additionally, we report axial granular pressure profiles at several solid volume fractions.Vladimir Zivkovic, Mark Biggs, Don Glasshttp://www.chemeca2010.com/abstract/341.as
Gravothermal Catastrophe, an Example
This work discusses gravothermal catastrophe in astrophysical systems and
provides an analytic collapse solution which exhibits many of the catastrophe
properties. The system collapses into a trapped surface with outgoing energy
radiated to a future boundary, and provides an example of catastrophic
collapse.Comment: To appear in Phys. Rev.
Topological constraints on spiral wave dynamics in spherical geometries with inhomogeneous excitability
We analyze the way topological constraints and inhomogeneity in the
excitability influence the dynamics of spiral waves on spheres and punctured
spheres of excitable media. We generalize the definition of an index such that
it characterizes not only each spiral but also each hole in punctured,
oriented, compact, two-dimensional differentiable manifolds and show that the
sum of the indices is conserved and zero. We also show that heterogeneity and
geometry are responsible for the formation of various spiral wave attractors,
in particular, pairs of spirals in which one spiral acts as a source and a
second as a sink -- the latter similar to an antispiral. The results provide a
basis for the analysis of the propagation of waves in heterogeneous excitable
media in physical and biological systems.Comment: 5 pages, 6 Figures, major revisions, accepted for publication in
Phys. Rev.
Scaling of Granular Temperature in a Dense Vibrated Granular Bed
The granular temperature underpins the kinetic theory of granular flows as well as theories for heat transfer, segregation, erosion, attrition and aggregation in various granular systems. We report granular temperature data of mono-disperse glass particles in a three-dimensional dense granular bed subject to vertical sinusoidal vibrations over a wide range of vibrational conditions as measured by diffusing wave spectroscopy (DWS). The granular temperature was found to scale with the square of the peak vibrational velocity inline with a number of theoretical models and experiments, but a significant correlation was observed between the granular temperature and the acceleration at constant peak velocity. Therefore, a map of granular temperature as a function of the peak vibrational velocity (range of 30 to 55 mm/s) and acceleration (1.8 to 3.4 Γ) is presented for the first time and discussed.Vladimir Zivkovic, Mark Biggs, Don Glasshttp://www.chemeca2010.com/abstract/342.as
The Aggregation Kinetics of a Simulated Telechelic Polymer
We investigate the aggregation kinetics of a simulated telechelic polymer
gel. In the hybrid Molecular Dynamics (MD) / Monte Carlo (MC) algorithm,
aggregates of associating end groups form and break according to MC rules,
while the position of the polymers in space is dictated by MD. As a result, the
aggregate sizes change every time step. In order to describe this aggregation
process, we employ master equations. They define changes in the number of
aggregates of a certain size in terms of reaction rates. These reaction rates
indicate the likelihood that two aggregates combine to form a large one, or
that a large aggregate splits into two smaller parts. The reaction rates are
obtained from the simulations for a range of temperatures.
Our results indicate that the rates are not only temperature dependent, but
also a function of the sizes of the aggregates involved in the reaction. Using
the measured rates, solutions to the master equations are shown to be stable
and in agreement with the aggregate size distribution, as obtained directly
from simulation data. Furthermore, we show how temperature induced variations
in these rates give rise to the observed changes in the aggregate distribution
that characterizes the sol-gel transition.Comment: 9 pages, 10 figure
Ideal MHD theory of low-frequency Alfven waves in the H-1 Heliac
A part analytical, part numerical ideal MHD analysis of low-frequency Alfven
wave physics in the H-1 stellarator is given. The three-dimensional,
compressible ideal spectrum for H-1 is presented and it is found that despite
the low beta (approx. 10^-4) of H-1 plasmas, significant Alfven-acoustic
interactions occur at low frequencies. Several quasi-discrete modes are found
with the three-dimensional linearised ideal MHD eigenmode solver CAS3D,
including beta-induced Alfven eigenmode (BAE)- type modes in beta-induced gaps.
The strongly shaped, low-aspect ratio magnetic geometry of H-1 causes CAS3D
convergence difficulties requiring the inclusion of many Fourier harmonics for
the parallel component of the fluid displacement eigenvector even for shear
wave motions. The highest beta-induced gap reproduces large parts of the
observed configurational frequency dependencies in the presence of hollow
temperature profiles
Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies
In previous work, empirical evidence indicated that a time-varying network
could propagate sufficient information to allow synchronization of the
sometimes coupled oscillators, despite an instantaneously disconnected
topology. We prove here that if the network of oscillators synchronizes for the
static time-average of the topology, then the network will synchronize with the
time-varying topology if the time-average is achieved sufficiently fast. Fast
switching, fast on the time-scale of the coupled oscillators, overcomes the
descychnronizing decoherence suggested by disconnected instantaneous networks.
This result agrees in spirit with that of where empirical evidence suggested
that a moving averaged graph Laplacian could be used in the master-stability
function analysis. A new fast switching stability criterion here-in gives
sufficiency of a fast-switching network leading to synchronization. Although
this sufficient condition appears to be very conservative, it provides new
insights about the requirements for synchronization when the network topology
is time-varying. In particular, it can be shown that networks of oscillators
can synchronize even if at every point in time the frozen-time network topology
is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD
Stable ring vortex solitons in Bessel optical lattices
Stable ring vortex solitons, featuring a bright-shape, appear to be very rare
in nature. However, here we show that they exist and can be made dynamically
stable in defocusing cubic nonlinear media with an imprinted Bessel optical
lattice. We find the families of vortex lattice solitons and reveal their
salient properties, including the conditions required for their stability. We
show that the higher the soliton topological charge, the deeper the lattice
modulation necessary for stabilization.Comment: 14 pages, 4 figures, submitted to Physical Review Letter
Fractal Scales in a Schwarzschild Atmosphere
Recently, Glass and Krisch have extended the Vaidya radiating metric to
include both a radiation fluid and a string fluid [1999 Class. Quantum Grav.
vol 16, 1175]. Mass diffusion in the extended Schwarzschild atmosphere was
studied. The continuous solutions of classical diffusive transport are believed
to describe the envelope of underlying fractal behavior. In this work we
examine the classical picture at scales on which fractal behavior might be
evident.Comment: to appear in Class. Quantum Gra
Detecting synchronization of self-sustained oscillators by external driving with varying frequency
We propose a method for detecting the presence of synchronization of
self-sustained oscillator by external driving with linearly varying frequency.
The method is based on a continuous wavelet transform of the signals of
self-sustained oscillator and external force and allows one to distinguish the
case of true synchronization from the case of spurious synchronization caused
by linear mixing of the signals. We apply the method to driven van der Pol
oscillator and to experimental data of human heart rate variability and
respiration.Comment: 9 pages, 7 figure
- …
