416 research outputs found

    The Herschel SPIRE Fourier Transform Spectrometer Spectral Feature Finder II. Estimating Radial Velocity of SPIRE Spectral Observation Sources

    Full text link
    The Herschel SPIRE FTS Spectral Feature Finder (FF) detects significant spectral features within SPIRE spectra and employs two routines, and external references, to estimate source radial velocity. The first routine is based on the identification of rotational CO emission, the second cross-correlates detected features with a line template containing most of the characteristic lines in typical far infra-red observations. In this paper, we outline and validate these routines, summarise the results as they pertain to the FF, and comment on how external references were incorporated.Comment: 12 pages, 16 figures, 1 table, accepted by MNRAS March 202

    FIR/submm spectroscopy with Herschel: first results from the VNGS and H-ATLAS surveys

    Full text link
    The FIR/submm window is one of the least-studied regions of the electromagnetic spectrum, yet this wavelength range is absolutely crucial for understanding the physical processes and properties of the ISM in galaxies. The advent of the Herschel Space Observatory has opened up the entire FIR/submm window for spectroscopic studies. We present the first FIR/submm spectroscopic results on both nearby and distant galaxies obtained in the frame of two Herschel key programs: the Very Nearby Galaxies Survey and the Herschel ATLAS

    Systematic characterisation of the Herschel SPIRE Fourier Transform Spectrometer

    Get PDF
    A systematic programme of calibration observations was carried out to monitor the performance of the SPIRE FTS instrument on board the Herschel Space Observatory. Observations of planets (including the prime point-source calibrator, Uranus), asteroids, line sources, dark sky, and cross-calibration sources were made in order to monitor repeatability and sensitivity, and to improve FTS calibration. We present a complete analysis of the full set of calibration observations and use them to assess the performance of the FTS. Particular care is taken to understand and separate out the effect of pointing uncertainties, including the position of the internal beam steering mirror for sparse observations in the early part of the mission. The repeatability of spectral line centre positions is <5km/s, for lines with signal-to-noise ratios >40, corresponding to <0.5-2.0% of a resolution element. For spectral line flux, the repeatability is better than 6%, which improves to 1-2% for spectra corrected for pointing offsets. The continuum repeatability is 4.4% for the SLW band and 13.6% for the SSW band, which reduces to ~1% once the data have been corrected for pointing offsets. Observations of dark sky were used to assess the sensitivity and the systematic offset in the continuum, both of which were found to be consistent across the FTS detector arrays. The average point-source calibrated sensitivity for the centre detectors is 0.20 and 0.21 Jy [1 sigma; 1 hour], for SLW and SSW. The average continuum offset is 0.40 Jy for the SLW band and 0.28 Jy for the SSW band.Comment: 41 pages, 37 figures, 32 tables. Accepted for publication in MNRA

    Star formation in the cluster CLG0218.3-0510 at z=1.62 and its large-scale environment: the infrared perspective

    Full text link
    The galaxy cluster CLG0218.3-0510 at z=1.62 is one of the most distant galaxy clusters known, with a rich muti-wavelength data set that confirms a mature galaxy population already in place. Using very deep, wide area (20x20 Mpc) imaging by Spitzer/MIPS at 24um, in conjunction with Herschel 5-band imaging from 100-500um, we investigate the dust-obscured, star-formation properties in the cluster and its associated large scale environment. Our galaxy sample of 693 galaxies at z=1.62 detected at 24um (10 spectroscopic and 683 photo-z) includes both cluster galaxies (i.e. within r <1 Mpc projected clustercentric radius) and field galaxies, defined as the region beyond a radius of 3 Mpc. The star-formation rates (SFRs) derived from the measured infrared luminosity range from 18 to 2500 Ms/yr, with a median of 55 Ms/yr, over the entire radial range (10 Mpc). The cluster brightest FIR galaxy, taken as the centre of the galaxy system, is vigorously forming stars at a rate of 256±\pm70 Ms/yr, and the total cluster SFR enclosed in a circle of 1 Mpc is 1161±\pm96 Ms/yr. We estimate a dust extinction of about 3 magnitudes by comparing the SFRs derived from [OII] luminosity with the ones computed from the 24um fluxes. We find that the in-falling region (1-3 Mpc) is special: there is a significant decrement (3.5x) of passive relative to star-forming galaxies in this region, and the total SFR of the galaxies located in this region is lower (130 Ms/yr/Mpc2) than anywhere in the cluster or field, regardless of their stellar mass. In a complementary approach we compute the local galaxy density, Sigma5, and find no trend between SFR and Sigma5. However, we measure an excess of star-forming galaxies in the cluster relative to the field by a factor 1.7, that lends support to a reversal of the SF-density relation in CLG0218.Comment: accepted for publication in MNRAS. v2: minor correction

    The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M* plane up to z 2

    Get PDF
    [Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.Comment: Accepted for publication in A&A; 18 pages, 10 figure

    Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    Get PDF
    The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolute pointing error (APE) are corrected. The satellite APE leads to a decrement in the derived flux, which can be up to ~10% (1 sigma) at the high-frequency end of the SPIRE range in the first part of the mission, and ~4% after Herschel operational day 1011. The lower frequency range of the SPIRE band is unaffected by this pointing error due to the larger beam size. Overall, for well-pointed, point-like sources, the absolute flux calibration is better than 6%, and for extended sources where mapping is required it is better than 7%.Comment: 20 pages, 18 figures, accepted for publication in MNRA

    GOODS-HerschelHerschel: identification of the individual galaxies responsible for the 80-290μ\mum cosmic infrared background

    Get PDF
    We propose a new method of pushing HerschelHerschel to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24μ\mum colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected HerschelHerschel sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250μ\mum and more than 3 in the 350μ\mum and 500μ\mum bands. We produce realistic mock HerschelHerschel images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-HerschelHerschel Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24μ\mum prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24μ\mum neighbours and the photometric accuracy index (PAI) directly extracted from the mock HerschelHerschel images. After correction for completeness, thanks to our mock HerschelHerschel images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100μ\mum and 2.2 mJy at 160μ\mum and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250μ\mum, 350μ\mum, and 500μ\mum, respectively. The latter depths improve the detection limits of HerschelHerschel by factors of 5 at 250μ\mum, and 3 at 350μ\mum and 500μ\mum as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all HerschelHerschel bands appear to be distant siblings of the Milky Way (zz\sim0.96 for λ\lambda<<300μ\mum) with a stellar mass of MM_{\star}\sim9×\times1010^{10}M_{\odot}.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and Astrophysic
    corecore