416 research outputs found
The Herschel SPIRE Fourier Transform Spectrometer Spectral Feature Finder II. Estimating Radial Velocity of SPIRE Spectral Observation Sources
The Herschel SPIRE FTS Spectral Feature Finder (FF) detects significant
spectral features within SPIRE spectra and employs two routines, and external
references, to estimate source radial velocity. The first routine is based on
the identification of rotational CO emission, the second cross-correlates
detected features with a line template containing most of the characteristic
lines in typical far infra-red observations. In this paper, we outline and
validate these routines, summarise the results as they pertain to the FF, and
comment on how external references were incorporated.Comment: 12 pages, 16 figures, 1 table, accepted by MNRAS March 202
FIR/submm spectroscopy with Herschel: first results from the VNGS and H-ATLAS surveys
The FIR/submm window is one of the least-studied regions of the
electromagnetic spectrum, yet this wavelength range is absolutely crucial for
understanding the physical processes and properties of the ISM in galaxies. The
advent of the Herschel Space Observatory has opened up the entire FIR/submm
window for spectroscopic studies. We present the first FIR/submm spectroscopic
results on both nearby and distant galaxies obtained in the frame of two
Herschel key programs: the Very Nearby Galaxies Survey and the Herschel ATLAS
Systematic characterisation of the Herschel SPIRE Fourier Transform Spectrometer
A systematic programme of calibration observations was carried out to monitor
the performance of the SPIRE FTS instrument on board the Herschel Space
Observatory. Observations of planets (including the prime point-source
calibrator, Uranus), asteroids, line sources, dark sky, and cross-calibration
sources were made in order to monitor repeatability and sensitivity, and to
improve FTS calibration. We present a complete analysis of the full set of
calibration observations and use them to assess the performance of the FTS.
Particular care is taken to understand and separate out the effect of pointing
uncertainties, including the position of the internal beam steering mirror for
sparse observations in the early part of the mission. The repeatability of
spectral line centre positions is <5km/s, for lines with signal-to-noise ratios
>40, corresponding to <0.5-2.0% of a resolution element. For spectral line
flux, the repeatability is better than 6%, which improves to 1-2% for spectra
corrected for pointing offsets. The continuum repeatability is 4.4% for the SLW
band and 13.6% for the SSW band, which reduces to ~1% once the data have been
corrected for pointing offsets. Observations of dark sky were used to assess
the sensitivity and the systematic offset in the continuum, both of which were
found to be consistent across the FTS detector arrays. The average point-source
calibrated sensitivity for the centre detectors is 0.20 and 0.21 Jy [1 sigma; 1
hour], for SLW and SSW. The average continuum offset is 0.40 Jy for the SLW
band and 0.28 Jy for the SSW band.Comment: 41 pages, 37 figures, 32 tables. Accepted for publication in MNRA
Star formation in the cluster CLG0218.3-0510 at z=1.62 and its large-scale environment: the infrared perspective
The galaxy cluster CLG0218.3-0510 at z=1.62 is one of the most distant galaxy
clusters known, with a rich muti-wavelength data set that confirms a mature
galaxy population already in place. Using very deep, wide area (20x20 Mpc)
imaging by Spitzer/MIPS at 24um, in conjunction with Herschel 5-band imaging
from 100-500um, we investigate the dust-obscured, star-formation properties in
the cluster and its associated large scale environment. Our galaxy sample of
693 galaxies at z=1.62 detected at 24um (10 spectroscopic and 683 photo-z)
includes both cluster galaxies (i.e. within r <1 Mpc projected clustercentric
radius) and field galaxies, defined as the region beyond a radius of 3 Mpc. The
star-formation rates (SFRs) derived from the measured infrared luminosity range
from 18 to 2500 Ms/yr, with a median of 55 Ms/yr, over the entire radial range
(10 Mpc). The cluster brightest FIR galaxy, taken as the centre of the galaxy
system, is vigorously forming stars at a rate of 25670 Ms/yr, and the
total cluster SFR enclosed in a circle of 1 Mpc is 116196 Ms/yr. We
estimate a dust extinction of about 3 magnitudes by comparing the SFRs derived
from [OII] luminosity with the ones computed from the 24um fluxes. We find that
the in-falling region (1-3 Mpc) is special: there is a significant decrement
(3.5x) of passive relative to star-forming galaxies in this region, and the
total SFR of the galaxies located in this region is lower (130 Ms/yr/Mpc2) than
anywhere in the cluster or field, regardless of their stellar mass. In a
complementary approach we compute the local galaxy density, Sigma5, and find no
trend between SFR and Sigma5. However, we measure an excess of star-forming
galaxies in the cluster relative to the field by a factor 1.7, that lends
support to a reversal of the SF-density relation in CLG0218.Comment: accepted for publication in MNRAS. v2: minor correction
The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M* plane up to z 2
[Abridged] We study the evolution of the radio spectral index and
far-infrared/radio correlation (FRC) across the star-formation rate-stellar
masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of
galaxies with reliable SFR and redshift estimates. We then grid the SFR-M*
plane in several redshift ranges and measure the infrared luminosity, radio
luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of
each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated
using their stacked far-infrared flux densities inferred from observations
obtained with Herschel. Their radio luminosities and radio spectral indices
(i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and
610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and
radio observations include the most widely studied blank extragalactic fields
-GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this
methodology, we constrain the radio spectral index and FRC index of
star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that
alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the
distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane
(i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead,
star-forming galaxies have a radio spectral index consistent with a canonical
value of 0.8, which suggests that their radio spectra are dominated by
non-thermal optically thin synchrotron emission. We find that qFIR displays a
moderate but statistically significant redshift evolution as
qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous
literature. Finally, we find no significant correlation between qFIR and
Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our
redshift bins, cannot be firmly ruled out using our dataset.Comment: Accepted for publication in A&A; 18 pages, 10 figure
Calibration of the Herschel SPIRE Fourier Transform Spectrometer
The Herschel SPIRE instrument consists of an imaging photometric camera and
an imaging Fourier Transform Spectrometer (FTS), both operating over a
frequency range of 450-1550 GHz. In this paper, we briefly review the FTS
design, operation, and data reduction, and describe in detail the approach
taken to relative calibration (removal of instrument signatures) and absolute
calibration against standard astronomical sources. The calibration scheme
assumes a spatially extended source and uses the Herschel telescope as primary
calibrator. Conversion from extended to point-source calibration is carried out
using observations of the planet Uranus. The model of the telescope emission is
shown to be accurate to within 6% and repeatable to better than 0.06% and, by
comparison with models of Mars and Neptune, the Uranus model is shown to be
accurate to within 3%. Multiple observations of a number of point-like sources
show that the repeatability of the calibration is better than 1%, if the
effects of the satellite absolute pointing error (APE) are corrected. The
satellite APE leads to a decrement in the derived flux, which can be up to ~10%
(1 sigma) at the high-frequency end of the SPIRE range in the first part of the
mission, and ~4% after Herschel operational day 1011. The lower frequency range
of the SPIRE band is unaffected by this pointing error due to the larger beam
size. Overall, for well-pointed, point-like sources, the absolute flux
calibration is better than 6%, and for extended sources where mapping is
required it is better than 7%.Comment: 20 pages, 18 figures, accepted for publication in MNRA
GOODS-: identification of the individual galaxies responsible for the 80-290m cosmic infrared background
We propose a new method of pushing to its faintest detection
limits using universal trends in the redshift evolution of the far infrared
over 24m colours in the well-sampled GOODS-North field. An extension to
other fields with less multi-wavelength information is presented. This method
is applied here to raise the contribution of individually detected
sources to the cosmic infrared background (CIRB) by a factor 5 close to its
peak at 250m and more than 3 in the 350m and 500m bands. We
produce realistic mock images of the deep PACS and SPIRE images of
the GOODS-North field from the GOODS- Key Program and use them to
quantify the confusion noise at the position of individual sources, i.e.,
estimate a "local confusion noise". Two methods are used to identify sources
with reliable photometric accuracy extracted using 24m prior positions.
The clean index (CI), previously defined but validated here with simulations,
which measures the presence of bright 24m neighbours and the photometric
accuracy index (PAI) directly extracted from the mock images. After
correction for completeness, thanks to our mock images, individually
detected sources make up as much as 54% and 60% of the CIRB in the PACS bands
down to 1.1 mJy at 100m and 2.2 mJy at 160m and 55, 33, and 13% of
the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250m, 350m,
and 500m, respectively. The latter depths improve the detection limits of
by factors of 5 at 250m, and 3 at 350m and 500m as
compared to the standard confusion limit. Interestingly, the dominant
contributors to the CIRB in all bands appear to be distant siblings
of the Milky Way (0.96 for 300m) with a stellar mass
of 910M.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and
Astrophysic
- …
