22 research outputs found

    EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy

    Get PDF
    Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities

    Nuclear Medicine Imaging Tracers for Neurology

    Get PDF
    Tracers to investigate neurological disorders with positron emission tomography (PET) or single-photon emission computed tomography (SPECT) have found many applications. Several molecular targets can be studied in the human brain in vivo, both in health and disease. Initially, most attention was given to tracers for translocator protein (TSPO), deposition of beta-amyloid, and the dopaminergic system. Many clinical studies have been published with application of a variety of tracers for these targets. During the past few years, more tracers have reached the stage of human studies such as imaging agents for tau protein, P2X7 receptor, SV2A receptor, and the cholinergic system. Other targets of interest that have been studied in man to a lesser extent are N-methyl-d-aspartic acid (NMDA), serotonergic, adenosine, gamma-aminobutyric acid (GABA), sigma, opioid, and metabotropic glutamate subtype 5 (mGlu5) receptors. In addition, several transporter systems have received a great deal of attention. Many tracers for new molecular targets are under development and may open new horizons in the future. Most PET tracers for the brain were initially labeled with 11C but were later replaced by 18F-labeled analogs, since this radionuclide enables longer scanning protocols, dissemination to other hospitals, and commercialization. This initial chapter will highlight PET tracers that have already reached the state of human application.</p

    Pharmacotherapy for Amyotrophic Lateral Sclerosis: A Review of Approved and Upcoming Agents

    No full text
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder involving loss of upper and lower motor neurons, with most cases ending in death within 3-5 years of onset. Several molecular and cellular pathways have been identified to cause ALS; however, treatments to stop or reverse disease progression are yet to be found. Riluzole, a neuroprotective agent offering only a modest survival benefit, has long been the sole disease-modifying therapy for ALS. Edaravone, which demonstrated statistically significant slowing of ALS disease progression, is gaining approval in an increasing number of countries since its first approval in 2015. Sodium phenylbutyrate and taurursodiol (PB-TURSO) was conditionally approved in Canada in 2022, having shown significant slowing of disease progression and prolonged survival. Most clinical trials have focused on testing small molecules affecting common cellular pathways in ALS: targeting glutamatergic, apoptotic, inflammatory, and oxidative stress mechanisms among others. More recently, clinical trials utilizing stem cell transplantation and other biologics have emerged. This rich and ever-growing pipeline of investigational products, along with innovative clinical trial designs, collaborative trial networks, and an engaged ALS community', provide renewed hope to finding a cure for ALS. This article reviews existing ALS therapies and the current clinical drug development pipeline

    Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact

    No full text
    Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies
    corecore