4,844 research outputs found
Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection
Astrophysical neutrinos at EeV energies promise to be an interesting
source for astrophysics and particle physics. Detecting the predicted
cosmogenic (``GZK'') neutrinos at 10 - 10 eV would test models of
cosmic ray production at these energies and probe particle physics at 100
TeV center-of-mass energy. While IceCube could detect 1 GZK event per
year, it is necessary to detect 10 or more events per year in order to study
temporal, angular, and spectral distributions. The IceCube observatory may be
able to achieve such event rates with an extension including optical, radio,
and acoustic receivers. We present results from simulating such a hybrid
detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC,
Pune, Indi
Simulation of Cosmic Ray neutrinos Interactions in Water
The program CORSIKA, usually used to simulate extensive cosmic ray air
showers, has been adapted to a water medium in order to study the acoustic
detection of ultra high energy neutrinos. Showers in water from incident
protons and from neutrinos have been generated and their properties are
described. The results obtained from CORSIKA are compared to those from other
available simulation programs such as Geant4.Comment: Talk presented on behalf of the ACoRNE Collaboration at the ARENA
Workshop 200
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
Hormonal replacement therapy, prothrombotic mutations and the risk of venous thrombosis
Hormone replacement therapy (HRT) increases the risk of venous thrombosis. We investigated whether this risk is affected by carriership of hereditary prothrombotic abnormalities. Therefore, we determined the two most common prothrombotic mutations, factor V Leiden and prothrombin 20210A in women who participated in a case-control study on venous thrombosis. Relative risks were expressed as odds ratios (OR) with 95% confidence intervals (CI95). Among 7 7 women aged 45-64 years with a first venous thrombosis, 51% were receiving HRT at the time of thrombosis, compared with 24% of control women (OR = 3.3, CI95 1.8-5.8). Among the patients, 23% had a prothrombotic defect, versus 7% among the control women (OR = 3.8, CI95 1.7- 8.5). Women who had factor V Leiden and used HRT had a 15-fold increased risk (OR = 15.5, CI95 3.1-77), which exceeded the expected joint odds ratio of 6.1 (under an additive model). We conclude that the thrombotic risk of HRT may particularly affect women with prothrombotic mutations. Efforts to avoid HRT in women with increased risk of thrombosis are advisable
Bayes and health care research.
Bayes’ rule shows how one might rationally change one’s beliefs in the light of evidence. It is the foundation of a statistical method called Bayesianism. In health care research, Bayesianism has its advocates but the dominant statistical method is frequentism.
There are at least two important philosophical differences between these methods. First, Bayesianism takes a subjectivist view of probability (i.e. that probability scores are statements of subjective belief, not objective fact) whilst frequentism takes an objectivist view. Second, Bayesianism is explicitly inductive (i.e. it shows how we may induce views about the world based on partial data from it) whereas frequentism is at least compatible with non-inductive views of scientific method, particularly the critical realism of Popper.
Popper and others detail significant problems with induction. Frequentism’s apparent ability to avoid these, plus its ability to give a seemingly more scientific and objective take on probability, lies behind its philosophical appeal to health care researchers.
However, there are also significant problems with frequentism, particularly its inability to assign probability scores to single events. Popper thus proposed an alternative objectivist view of probability, called propensity theory, which he allies to a theory of corroboration; but this too has significant problems, in particular, it may not successfully avoid induction. If this is so then Bayesianism might be philosophically the strongest of the statistical approaches. The article sets out a number of its philosophical and methodological attractions. Finally, it outlines a way in which critical realism and Bayesianism might work together.
</p
Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array
We present the development of a novel 11328 pixel silicon photomultiplier
(SiPM) camera for use with a ground-based Cherenkov telescope with
Schwarzschild-Couder optics as a possible medium-sized telescope for the
Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower
images with more than twice the optical resolution of cameras that are used in
current Cherenkov telescopes. Advantages of the higher resolution will be a
better event reconstruction yielding improved background suppression and
angular resolution of the reconstructed gamma-ray events, which is crucial in
morphology studies of, for example, Galactic particle accelerators and the
search for gamma-ray halos around extragalactic sources. Packing such a large
number of pixels into an area of only half a square meter and having a fast
readout directly attached to the back of the sensors is a challenging task. For
the prototype camera development, SiPMs from Hamamatsu with through silicon via
(TSV) technology are used. We give a status report of the camera design and
highlight a number of technological advancements that made this development
possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
The PANDA GEM-based TPC Prototype
We report on the development of a GEM-based TPC prototype for the PANDA
experiment. The design and requirements of this device will be illustrated,
with particular emphasis on the properties of the recently tested GEM-detector,
the characterization of the read-out electronics and the development of the
tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture
Geospatial information infrastructures
Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments
- …
