676 research outputs found

    Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants

    Get PDF
    Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    Factors associated with pastoral community knowledge and occurrence of mycobacterial infections in human-animal interface areas of Nakasongola and Mubende districts, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens whose role in human and animal disease is increasingly being recognized. Major concerns are their role as opportunistic pathogens in HIV/AIDS infections. The role of open natural water sources as source and livestock/wildlife as reservoirs of infections to man are well documented. This presents a health challenge to the pastoral systems in Africa that rely mostly on open natural water sources to meet livestock and human needs. Recent study in the pastoral areas of Uganda showed infections with same genotypes of NTM in pastoralists and their livestock. The aim of this study was to determine the environmental, animal husbandry and socio-demographic factors associated with occurrence and the pastoral community knowledge of mycobacterial infections at the human-environment-livestock/wildlife interface (HELI) areas in pastoral ecosystems of Uganda.</p> <p>Methods</p> <p>Two hundred and fifty three (253) individuals were subjected to a questionnaire survey across the study districts of Nakasongola and Mubende. Data were analyzed using descriptive statistics and multivariable logistic regression analysis.</p> <p>Results</p> <p>Humans sharing of the water sources with wild animals from the forest compared to savannah ecosystem (OR = 3.3), the tribe of herding pastoral community (OR = 7.9), number of rooms present in household (3-5 vs. 1-2 rooms) (OR = 3.3) were the socio-demographic factors that influenced the level of knowledge on mycobacterial infections among the pastoral communities. Tribe (OR = 6.4), use of spring vs. stream water for domestic use (OR = 4.5), presence of sediments in household water receptacle (OR = 2.32), non separation of water containers for drinking and domestic use (OR = 2.46), sharing of drinking water sources with wild animals (OR = 2.1), duration of involvement of >5 yrs in cattle keeping (OR = 3.7) and distance of household to animal night shelters (>20 meters) (OR = 3.8) were significant socio-demographic factors associated with the risk of occurrence of mycobacterioses among the pastoral communities in Uganda.</p> <p>Conclusion</p> <p>The socio-demographic, environmental and household related factors influence the risk of occurrence as well as pastoralists' knowledge of mycobacterial infections in the pastoral households at the human-environment-livestock/wildlife pastoral interface areas of Uganda.</p

    Severe malaria in children leads to a significant impairment of transitory otoacoustic emissions--a prospective multicenter cohort study.

    Get PDF
    BACKGROUND: Severe malaria may influence inner ear function, although this possibility has not been examined prospectively. In a retrospective analysis, hearing impairment was found in 9 of 23 patients with cerebral malaria. An objective method to quickly evaluate the function of the inner ear are the otoacoustic emissions. Negative transient otoacoustic emissions are associated with a threshold shift of 20 dB and above. METHODS: This prospective multicenter study analyses otoacoustic emissions in patients with severe malaria up to the age of 10 years. In three study sites (Ghana, Gabon, Kenya) 144 patients with severe malaria and 108 control children were included. All malaria patients were treated with parental artesunate. RESULTS: In the control group, 92.6 % (n = 108, 95 % confidence interval 86.19-6.2 %) passed otoacoustic emission screening. In malaria patients, 58.5 % (n = 94, malaria vs controls p < 0.001, 95 % confidence interval 48.4-67.9 %) passed otoacoustic emission screening at the baseline measurement. The value increased to 65.2 % (n = 66, p < 0.001, 95 % confidence interval 53.1-75.5 %) at follow up 14-28 days after diagnosis of malaria. The study population was divided into severe non-cerebral malaria and severe malaria with neurological symptoms (cerebral malaria). Whereas otoacoustic emissions in severe malaria improved to a passing percentage of 72.9 % (n = 48, 95 % confidence interval 59-83.4 %) at follow-up, the patients with cerebral malaria showed a drop in the passing percentage to 33 % (n = 18) 3-7 days after diagnosis. This shows a significant impairment in the cerebral malaria group (p = 0.012 at days 3-7, 95 % confidence interval 16.3-56.3 %; p = 0.031 at day 14-28, 95 % confidence interval 24.5-66.3 %). CONCLUSION: The presented data show that 40 % of children have involvement of the inner ear early in severe malaria. In children, audiological screening after severe malaria infection is not currently recommended, but is worth investigating in larger studies

    Promoter Hypermethylation-Related Reduced Somatostatin Production Promotes Uncontrolled Cell Proliferation in Colorectal Cancer.

    Get PDF
    BACKGROUND: Somatostatin (SST) has anti-proliferative and pro-apoptotic effects. Our aims were to analyze and compare the SST expression during normal aging and colorectal carcinogenesis at mRNA and protein levels. Furthermore, we tested the methylation status of SST in biopsy samples, and the cell growth inhibitory effect of the SST analogue octreotide in human colorectal adenocarcinoma cell line. METHODS: Colonic samples were collected from healthy children (n1 = 6), healthy adults (n2 = 41) and colorectal cancer patients (CRCs) (n3 = 34) for SST mRNA expression analysis, using HGU133 Plus2.0 microarrays. Results were validated both on original (n1 = 6; n2 = 6; n3 = 6) and independent samples ((n1 = 6; n2 = 6; n3 = 6) by real-time PCR. SST expressing cells were detected by immunohistochemistry on colonic biopsy samples (n1 = 14; n2 = 20; n3 = 23). The effect of octreotide on cell growth was tested on Caco-2 cell line. SST methylation percentage in biopsy samples (n1 = 5; n2 = 5; n3 = 9) was defined using methylation-sensitive restriction enzyme digestion. RESULTS: In case of normal aging SST mRNA expression did not alter, but decreased in cancer (p<0.05). The ratio of SST immunoreactive cells was significantly higher in children (0.70%+/-0.79%) compared to CRC (0%+/-0%) (p<0.05). Octreotide significantly increased the proportion of apoptotic Caco-2 cells. SST showed significantly higher methylation level in tumor samples (30.2%+/-11.6%) compared to healthy young individuals (3.5%+/-1.9%) (p<0.05). CONCLUSIONS: In cancerous colonic mucosa the reduced SST production may contribute to the uncontrolled cell proliferation. Our observation that in colon cancer cells octreotide significantly enhanced cell death and attenuated cell proliferation suggests that SST may act as a regulator of epithelial cell kinetics. The inhibition of SST expression in CRC can be epigenetically regulated by promoter hypermethylation

    Distinct factors determine the kinetics of disease relapse in adults transplanted for acute myeloid leukaemia

    Get PDF
    Background: Disease recurrence remains the major cause of death in adults with acute myeloid leukaemia (AML) treated using either intensive chemotherapy (IC) or allogenic stem cell transplantation (allo-SCT). Aims: The timely delivery of maintenance drug or cellular therapies represent emerging strategies with the potential to reduce relapse after both treatment modalities, but whilst the determinants of overall relapse risk have been extensively characterized the factors determining the timing of disease recurrence have not been characterized. Materials and Methods: We have therefore examined, using a series of sequential landmark analyses, relapse kinetics in a cohort of 2028 patients who received an allo-SCT for AML in CR1 and separately 570 patients treated with IC alone. Results: In the first 3 months after allo-SCT, the factors associated with an increased risk of relapse included the presence of the FLT3-ITD (P < 0.001), patient age (P = 0.012), time interval from CR1 to transplant (P < 0.001) and donor type (P = 0.03). Relapse from 3 to 6 months was associated with a higher white cell count at diagnosis (P = 0.001), adverse-risk cytogenetics (P < 0.001), presence of FLT3-ITD mutation (P < 0.001) and time interval to achieve first complete remission (P = 0.013). Later relapse was associated with adverse cytogenetics, mutated NPM1, absence of chronic graft-versus-host disease (GVHD) and the use of in vivo T-cell depletion. In patients treated with IC alone, the factors associated with relapse in the first 3 months were adverse-risk cytogenetics (P < 0.001) and FLT3-ITD status (P = 0.001). The factors predicting later relapse were the time interval from diagnosis to CR1 (P = 0.22) and time interval from CR1 to IC (P = 0.012). Discussion and Conclusion: Taken together, these data provide novel insights into the biology of disease recurrence after both allo-SCT and IC and have the potential to inform the design of novel maintenance strategies in both clinical settings

    Genetic Diversity and Ecological Niche Modelling of Wild Barley:Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    Get PDF
    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security

    Vaccine responses in newborns.

    Get PDF
    Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life
    corecore