6,706 research outputs found

    Graph-based task libraries for robots: generalization and autocompletion

    Get PDF
    In this paper, we consider an autonomous robot that persists over time performing tasks and the problem of providing one additional task to the robot's task library. We present an approach to generalize tasks, represented as parameterized graphs with sequences, conditionals, and looping constructs of sensing and actuation primitives. Our approach performs graph-structure task generalization, while maintaining task ex- ecutability and parameter value distributions. We present an algorithm that, given the initial steps of a new task, proposes an autocompletion based on a recognized past similar task. Our generalization and auto- completion contributions are eective on dierent real robots. We show concrete examples of the robot primitives and task graphs, as well as results, with Baxter. In experiments with multiple tasks, we show a sig- nicant reduction in the number of new task steps to be provided

    Further progress in ion back-flow reduction with patterned gaseous hole-multipliers

    Full text link
    A new idea on electrostatic deviation and capture of back-drifting avalanche-ions in cascaded gaseous hole-multipliers is presented. It involves a flipped reversed-bias Micro-Hole & Strip Plate (F-R-MHSP) element, the strips of which are facing the drift region of the multiplier. The ions, originating from successive multiplication stages, are efficiently deviated and captured by such electrode. Experimental results are provided comparing the ion-blocking capability of the F-R-MHSP to that of the reversed-bias Micro-Hole & Strip Plate (R-MHSP) and the Gas Electron Multiplier (GEM). Best ion-blocking results in cascaded hole-multipliers were reached with a detector having the F-R-MHSP as the first multiplication element. A three-element F-R-MHSP/GEM/MHSP cascaded multiplier operated in atmospheric-pressure Ar/CH4 (95/5), at total gain of ~10^{5}, yielded ion back-flow fractions of 3*10^{-4} and 1.5*10^{-4}, at drift fields of 0.5 and 0.2 kV/cm, respectively. We describe the F-R-MHSP concept and the relevance of the obtained ion back-flow fractions to various applications; further ideas are also discussed.Comment: 17 pages, 11 figures, published in JINS

    Modificación química y estructural de madera mediante tratamiento hidrotérmico alcalino

    Get PDF
    Se trataron probetas de Pinus ponderosa con agua a 100 ºC y con una solución acuosa de NaOH (tratamiento hidrotérmico alcalino) con el fin de analizar la posible hidrorrepelencia de las mismas, basado fundamentalmente en los efectos que estos produce en la celulosa. Los ensayos de resistencia a la rotura, absorción de agua y análisis estructural permitieron concluir que estos métodos modifican la química y estructura de la madera, otorgando hidrorrepelencia debido a la pérdida estructural de las fibras de la madera, lo cual impide que se produzca el fenómeno de capilaridad, manteniendo su resistencia mecánica y estabilidad dimensional. Por lo tanto, el tratamiento resultó útil para proteger la madera para nuevas construcciones como así también para la consolidación y protección de maderas que componen bienes de importancia patrimonial.Tópico 5: Conservación y restauración de bienes muebles y piezas (documentos de archivos, pinturas, cueros, maderas, textiles, metales, rocas ornamentales, vitrales, etc.)

    A dynamic method for charging-up calculations: the case of GEM

    Full text link
    The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to simulate exactly the effective charge gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method uses a constant step for avalanches time evolution, very detailed, but slower to compute. The second method uses a dynamic step that improves the computing time. Good agreement between both methods was reached. Despite of comparison with experimental results shows that charging-up plays an important role in detectors operation, should not be the only responsible for the difference between simulated and measured effective gain, but explains the time evolution in the effective gain.Comment: Minor changes in grammatical statements and inclusion of some important information about experimental setup at section "Comparison with experimental results

    Simulation of gain stability of THGEM gas-avalanche particle detectors

    Full text link
    Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of charging-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrode's hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously

    Ion-induced effects in GEM & GEM/MHSP gaseous photomultipliers for the UV and the visible spectral range

    Get PDF
    We report on the progress in the study of cascaded GEM and GEM/MHSP gas avalanche photomultipliers operating at atmospheric pressure, with CsI and bialkali photocathodes. They have single-photon sensitivity, ns time resolution and good localization properties. We summarize operational aspects and results, with the highlight of a high-gain stable gated operation of a visible-light device. Of particular importance are the results of a recent ion-backflow reduction study in different cascaded multipliers, affecting the detector's stability and the photocathode's liftime. We report on the significant progress in ion-blocking and provide first results on bialkali-photocathode aging under gas multiplication.Comment: 6 pages, 8 figure

    Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

    Get PDF
    A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed

    Highly charged ion X-rays from Electron-Cyclotron Resonance Ion Sources

    Get PDF
    Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (1\approx 1 eV) transitions can be very narrow, containing only small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16--18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms
    corecore