1,901 research outputs found

    Extended Technicolor Models with Two ETC Groups

    Full text link
    We construct extended technicolor (ETC) models that can produce the large splitting between the masses of the tt and bb quarks without necessarily excessive contributions to the ρ\rho parameter or to neutral flavor-changing processes. These models make use of two different ETC gauge groups, such that left- and right-handed components of charge Q=2/3Q=2/3 quarks transform under the same ETC group, while left- and right-handed components of charge -1/3 quarks and charged leptons transform under different ETC groups. The models thereby suppress the masses mbm_b and mτm_\tau relative to mtm_t, and msm_s and mμm_\mu relative to mcm_c because the masses of the Q=1/3Q=-1/3 quarks and charged leptons require mixing between the two ETC groups, while the masses of the Q=2/3Q=2/3 quarks do not. A related source of the differences between these mass splittings is the effect of the two hierarchies of breaking scales of the two ETC groups. We analyze a particular model of this type in some detail. Although we find that this model tends to suppress the masses of the first two generations of down-type quarks and charged leptons too much, it gives useful insights into the properties of theories with more than one ETC group.Comment: 14 pages, 4 figure

    Implications of Dynamical Generation of Standard-Model Fermion Masses

    Full text link
    We point out that if quark and lepton masses arise dynamically, then in a wide class of theories the corresponding running masses mfj(p)m_{f_j}(p) exhibit the power-law decay mfj(p)Λj2/p2m_{f_j}(p) \propto \Lambda_j^2/p^2 for Euclidean momenta p>>Λjp >> \Lambda_j, where fjf_j is a fermion of generation jj, and Λj\Lambda_j is the maximal scale relevant for the origin of mfjm_{f_j}. We estimate resultant changes in precision electroweak quantities and compare with current data. It is found that this data allows the presence of such corrections. We also note that this power-law decay renders primitively divergent fermion mass corrections finite.Comment: 4 pages, late

    Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory

    Full text link
    Manipulating expressions in many-body perturbation theory becomes unwieldily with increasing order of the perturbation theory. Here I derive a set of theorems for efficient simplification of such expressions. The derived rules are specifically designed for implementing with symbolic algebra tools. As an illustration, we count the numbers of Brueckner-Goldstone diagrams in the first several orders of many-body perturbation theory for matrix elements between two states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm

    Low-Energy Effective Theory, Unitarity, and Non-Decoupling Behavior in a Model with Heavy Higgs-Triplet Fields

    Get PDF
    We discuss the properties of a model incorporating both a scalar electroweak Higgs doublet and an electroweak Higgs triplet. We construct the low-energy effective theory for the light Higgs-doublet in the limit of small (but nonzero) deviations in the rho parameter from one, a limit in which the triplet states become heavy. For small deviations in the rho parameter from one, perturbative unitarity of WW scattering breaks down at a scale inversely proportional to the renormalized vacuum expectation value of the triplet field (or, equivalently, inversely proportional to the square-root of the deviation of the rho parameter from one). This result imposes an upper limit on the mass-scale of the heavy triplet bosons in a perturbative theory; we show that this upper bound is consistent with dimensional analysis in the low-energy effective theory. Recent articles have shown that the triplet bosons do not decouple, in the sense that deviations in the rho parameter from one do not necessarily vanish at one-loop in the limit of large triplet mass. We clarify that, despite the non-decoupling behavior of the Higgs-triplet, this model does not violate the decoupling theorem since it incorporates a large dimensionful coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of order the GUT scale, perturbative consistency of the theory requires the (properly renormalized) Higgs-triplet vacuum expectation value to be so small as to be irrelevant for electroweak phenomenology.Comment: Revtex, 11 pages, 7 eps figures included; references updated and three footnotes adde

    Regularization Methods in Chiral Perturbation Theory

    Full text link
    Chiral lagrangians describing the interactions of Goldstone bosons in a theory possessing spontaneous symmetry breaking are effective, non-renormalizable field theories in four dimensions. Yet, in a momentum expansion one is able to extract definite, testable predictions from perturbation theory. These techniques have yielded in recent years a wealth of information on many problems where the physics of Goldstone bosons plays a crucial role, but theoretical issues concerning chiral perturbation theory remain, to this date, poorly treated in the literature. We present here a rather comprehensive analysis of the regularization and renormalization ambiguities appearing in chiral perturbation theory at the one loop level. We discuss first on the relevance of dealing with tadpoles properly. We demonstrate that Ward identities severely constrain the choice of regulators to the point of enforcing unique, unambiguous results in chiral perturbation theory at the one-loop level for any observable which is renormalization-group invariant. We comment on the physical implications of these results and on several possible regulating methods that may be of use for some applications.Comment: 37 pages, 5 figs. not included (available upon request), LaTeX, PREPRINT UB-ECM-PF 93/1

    An alternative heavy Higgs mass limit

    Full text link
    After commenting on the present value of the Higgs particle mass from radiative corrections, we explore the phenomenological implications of an alternative, non-perturbative renormalization of the scalar sector where the mass of the Higgs particle does not represent a measure of observable interactions at the Higgs mass scale. In this approach the Higgs particle could be very heavy, even heavier than 1 TeV, and remain nevertheless a relatively narrow resonance.Comment: 17 pages. Version accepted for publication in Journal of Physics

    Leading quantum gravitational corrections to QED

    Get PDF
    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged spin-1/2 fermions in the combined theory of general relativity and QED. The coupled Dirac-Einstein system is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two massive fermions with electric charge.Comment: 14 pages, 29 figures, format RevTex

    Vacuum energy: quantum hydrodynamics vs quantum gravity

    Get PDF
    We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which in the quantum gravity transforms to the cosmological constant problem. We show that in quantum liquids the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid including the radius of the liquid droplet. In the same manner the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to thermodynamic stability of the whole quantum vacuum.Comment: 14 pages, no figures, added section on the problem of Higgs mass, version accepted for the special issue of JETP Letter

    Dropping rho and A_1 Meson Masses at Chiral Phase Transition in the Generalized Hidden Local Symmetry

    Full text link
    We study the chiral symmetry restoration using the generalized hidden local symmetry (GHLS) which incorporates the rho and A_1 mesons as the gauge bosons of the GHLS and the pion as the Nambu-Goldstone boson consistently with the chiral symmetry of QCD. We show that a set of parameter relations, which ensures the first and second Weinberg's sum rules, is invariant under the renormalization group evolution. Then, we found that the Weinberg's sum rules together with the matching of the vector and axial-vector current correlators inevitably leads to {\it the dropping masses of both rho and A_1 mesons} at the symmetry restoration point, and that the mass ratio as well as the mixing angle between the pion and A_1 meson flows into one of three fixed points.Comment: 17 pages, 7 figures; references added and discussions expande
    corecore