1,205 research outputs found
The effects of a revised Be e-capture rate on solar neutrino fluxes
The electron-capture rate on Be is the main production channel for Li
in several astrophysical environments. Theoretical evaluations have to account
for not only the nuclear interaction, but also the processes in the plasma
where Be ions and electrons interact. In the past decades several estimates
were presented, pointing out that the theoretical uncertainty in the rate is in
general of few percents. In the framework of fundamental solar physics, we
consider here a recent evaluation for the Be+e rate, not used up to now
in the estimate of neutrino fluxes. We analysed the effects of the new
assumptions on Standard Solar Models (SSMs) and compared the results obtained
by adopting the revised Be+e rate to those obtained by the one reported
in a widely used compilation of reaction rates (ADE11). We found that new SSMs
yield a maximum difference in the efficiency of the Be channel of about
-4\% with respect to what is obtained with the previously adopted rate. This
fact affects the production of neutrinos from B, increasing the relative
flux up to a maximum of 2.7\%. Negligible variations are found for the physical
and chemical properties of the computed solar models. The agreement with the
SNO measurements of the neutral current component of the B neutrino flux is
improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&
On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios
Recent improvements in stellar models for intermediate-mass and massive stars
are recalled, together with their expectations for the synthesis of radioactive
nuclei of lifetime Myr, in order to re-examine the origins
of now extinct radioactivities, which were alive in the solar nebula. The
Galactic inheritance broadly explains most of them, especially if -process
nuclei are produced by neutron star merging according to recent models.
Instead, Al, Ca, Cs and possibly Fe require
nucleosynthesis events close to the solar formation. We outline the persisting
difficulties to account for these nuclei by Intermediate Mass Stars (2
M/M). Models of their final stages now
predict the ubiquitous formation of a C reservoir as a neutron capture
source; hence, even in presence of Al production from Deep Mixing or Hot
Bottom Burning, the ratio Al/Pd remains incompatible with
measured data, with a large excess in Pd. This is shown for two recent
approaches to Deep Mixing. Even a late contamination by a Massive Star meets
problems. In fact, inhomogeneous addition of Supernova debris predicts
non-measured excesses on stable isotopes. Revisions invoking specific low-mass
supernovae and/or the sequential contamination of the pre-solar molecular cloud
might be affected by similar problems, although our conclusions here are
weakened by our schematic approach to the addition of SN ejecta. The limited
parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap
Remarks on the geometrical properties of semiclassically quantized strings
We discuss some geometrical aspects of the semiclassical quantization of string solutions in type IIB Green–Schwarz action on ADS5xS5 We concentrate on quadratic fluctuations around classical configurations, expressing the relevant differential operators in terms of (intrinsic and extrinsic) invariants of the background geometry. The aim of our exercise is to present some compact expressions encoding the spectral properties of bosonic and fermionic fluctuations. The appearing of non-trivial structures on the relevant bundles and their role in concrete computations are also considered. We corroborate the presentation of general formulas by working out explicitly a couple of relevant examples, namely the spinning string and the latitude BPS Wilson loop
Trigger and readout electronics for the STEREO experiment
The STEREO experiment will search for a sterile neutrino by measuring the
anti-neutrino energy spectrum as a function of the distance from the source,
the ILL nuclear reactor. A dedicated electronic system, hosted in a single
microTCA crate, was designed for this experiment. It performs triggering in two
stages with various selectable conditions, processing and readout via UDP/IPBUS
of 68 photomultiplier signals continuously digitized at 250 MSPS. Additionally,
for detector performance monitoring, the electronics allow on-line calibration
by driving LED synchronously with the data acquisition. This paper describes
the electronics requirements, architecture and the performances achieved.Comment: Topical Workshop on Electronics for Particle Physics (TWEPP) 2015,
Lisboa. 9 pages, 9 figure
NIKEL_AMC: Readout electronics for the NIKA2 experiment
The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at
the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to
mm-wave astronomy using microwave kinetic inductance detectors (KID) as
sensors. The three arrays installed in the camera, two at 1.25 mm and one at
2.05 mm, feature a total of 3300 KIDs. To instrument these large array of
detectors, a specifically designed electronics, composed of 20 readout boards
and hosted in three microTCA crates, has been developed. The implemented
solution and the achieved performances are presented in this paper. We find
that multiplexing factors of up to 400 detectors per board can be achieved with
homogeneous performance across boards in real observing conditions, and a
factor of more than 3 decrease in volume with respect to previous generations.Comment: 21 pages; 16 figure
Effects of Concurrent Resistance and Aerobic Training on Load-Bearing Performance and the Army Physical Fitness Test
The purpose of this research was to determine the effects of high intensity endurance training (ET) and resistance training (RT) alone and in combination on various military tasks. Thirty-five male soldiers were randomly assigned to one of four training groups: total body resistance training plus endurance training (RT + ET), upper body resistance training plus endurance training [UB + ET), RT only, and ET only. Training was performed 4 days per week for 12 weeks. Testing occurred before and after the 12-week training regimen. All groups significantly improved push-up performance, whereas only the RT + ET group did not improve sit-up performance. The groups that included ET significantly decreased 2-mile run time, however, only RT + ET and UB + ET showed improved loaded 2-mile run time. Leg power increased for groups that included lower body strengthening exercises (RT and RT + ET). Army Physical Fitness Test performance, loaded running, and leg power responded positively to training, however, it appears there is a high degree of specificity when concurrent training regimens are implemented
Status of the Super-B factory Design
The SuperB international team continues to optimize the design of an
electron-positron collider, which will allow the enhanced study of the origins
of flavor physics. The project combines the best features of a linear collider
(high single-collision luminosity) and a storage-ring collider (high repetition
rate), bringing together all accelerator physics aspects to make a very high
luminosity of 10 cm sec. This asymmetric-energy collider
with a polarized electron beam will produce hundreds of millions of B-mesons at
the (4S) resonance. The present design is based on extremely low
emittance beams colliding at a large Piwinski angle to allow very low
without the need for ultra short bunches. Use of crab-waist
sextupoles will enhance the luminosity, suppressing dangerous resonances and
allowing for a higher beam-beam parameter. The project has flexible beam
parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring
for longitudinal polarization of the electron beam at the Interaction Point.
Optimized for best colliding-beam performance, the facility may also provide
high-brightness photon beams for synchrotron radiation applications
The PLASMONX Project for advanced beam physics experiments
The Project PLASMONX is well progressing into its
design phase and has entered as well its second phase of
procurements for main components. The project foresees
the installation at LNF of a Ti:Sa laser system (peak
power > 170 TW), synchronized to the high brightness
electron beam produced by the SPARC photo-injector.
The advancement of the procurement of such a laser
system is reported, as well as the construction plans of a
new building at LNF to host a dedicated laboratory for
high intensity photon beam experiments (High Intensity
Laser Laboratory). Several experiments are foreseen
using this complex facility, mainly in the high gradient
plasma acceleration field and in the field of mono-
chromatic ultra-fast X-ray pulse generation via Thomson
back-scattering. Detailed numerical simulations have
been carried out to study the generation of tightly focused
electron bunches to collide with laser pulses in the
Thomson source: results on the emitted spectra of X-rays
are presented
Crystallization in load-controlled shearing flows of monosized spheres
Identical, inelastic spheres crystallize when sheared between two parallel, bumpy planes under a constant load larger than a minimum value. We investigate the effect of the inter-particle friction coefficient of the sheared particles on the flow dynamics and the crystallization process with discrete element simulations. If the imposed load is about the minimum value to observe crystallization in frictionless spheres, adding small friction to the granular assembly results in a shear band adjacent to one of the planes and one crystallized region, where a plug flow is observed. The ordered particles are arranged in both face-centered cubic and hexagonal-closed packed phases. The particles in the shear band are in between the crystalline state and the fluid state, but the latter is never reached, which results in a large shear resistance. As the particle friction increases, the shear band disappears, and the ordering in the core region is destroyed. A significant portion of the particles are in a fluid state with a zero shear rate, leading to a substantial and unexpected reduction in the shear resistance with respect to the frictionless case. If the imposed load is increased well above the minimum from the onset of crystallization, we observe the formation of one shear band in the core, where the particles are again between the crystalline state and the fluid state, surrounded by two crystallized regions near the boundaries, in which most of the particles are in the face-centered cubic phase and translate as a rigid body with the boundaries themselves. In this case, the macroscopic shear resistance is independent of the particle friction
- …
