145 research outputs found

    Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators

    Get PDF
    In this paper, a discrete model is adopted, as proposed by Hencky for elastica based on rigid bars and lumped rotational springs, to design the control of a lightweight planar manipulator with multiple highly flexible links. This model is particularly suited to deal with nonlinear equations of motion as those associated with multilink robot arms, because it does not include any simplification due to linearization, as in the assumed modes method. The aim of the control is to track a trajectory of the end effector of the robot arm, without the onset of vibrations. To this end, an energy-based method is proposed. Numerical simulations show the effectiveness of the presented approach

    Deformation patterns in a second-gradient lattice annular plate composed of "Spira mirabilis" fibers

    Get PDF
    In this paper, we aim to explore the mechanical potentialities of a material made of an orthogonal net of fibers arranged in logarithmic spirals. Therefore, an annular plate described with a second-gradient model is envisaged to evaluate the behavior of such material in a nonlinear elastic regime when large displacements and deformations occur. Several mechanical tests are performed numerically under the finite element method approximation obtained directly with a weak formulation based on the elastic energy that it is assumed to be predictive for this kind of network system of fibers. Plots reporting the mechanical characteristics in all the considered tests are provided to illustrate the overall mechanical behavior of the evaluated system

    Frequency Shifts in Natural Vibrations in Pantographic Metamaterials under Biaxial Tests

    Get PDF
    In this paper a 2D continuum model, thought as the homogenized limit of a microstructured pantographic sheet, is studied. The microstructure is characterized by two families of parallel fibers, whose deformation measures account for bending, elongation and relative rotation of the fibers. The deformation energy density of the homogenized model depends on both first and second gradients of the displacement. Modal analysis is performed in order to assess the peculiarities of the dynamic behavior of higher gradient models, and in particular the difference, with respect to classical laminae, in the dependence of the eigenfrequencies on the stiffness

    Small-Molecule Protein-Protein Interaction Inhibitor of Oncogenic Rho Signaling

    Get PDF
    Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells. By interacting with the DH domain, the compound inhibits the catalytic activity of Lbc, halts cellular responses to activation of oncogenic Lbc pathways, and reverses a number of prostate cancer cell phenotypes such as proliferation, migration, and invasiveness. This study provides insights into the structural determinants of Lbc-RhoA recognition. This is a successful example of structure-based discovery of a small protein-protein interaction inhibitor able to halt oncogenic Rho signaling in cancer cells with therapeutic implications

    Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models

    Get PDF
    A unified variational theory is proposed for a general class of multiscale models based on the concept of Representative Volume Element. The entire theory lies on three fundamental principles: (1) kinematical admissibility, whereby the macro- and micro-scale kinematics are defined and linked in a physically meaningful way; (2) duality, through which the natures of the force- and stress-like quantities are uniquely identified as the duals (power-conjugates) of the adopted kinematical variables; and (3) the Principle of Multiscale Virtual Power, a generalization of the well-known Hill-Mandel Principle of Macrohomogeneity, from which equilibrium equations and homogenization relations for the force- and stress-like quantities are unequivocally obtained by straightforward variational arguments. The proposed theory provides a clear, logically-structured framework within which existing formulations can be rationally justified and new, more general multiscale models can be rigorously derived in well-defined steps. Its generality allows the treatment of problems involving phenomena as diverse as dynamics, higher order strain effects, material failure with kinematical discontinuities, fluid mechanics and coupled multi-physics. This is illustrated in a number of examples where a range of models is systematically derived by following the same steps. Due to the variational basis of the theory, the format in which derived models are presented is naturally well suited for discretization by finite element-based or related methods of numerical approximation. Numerical examples illustrate the use of resulting models, including a non-conventional failure-oriented model with discontinuous kinematics, in practical computations

    Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila

    Get PDF
    Heterochromatin Protein 1 (HP1a) is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3K9me), creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA–immunoprecipitation on microarrays), and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs) involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a significant role on both RNA and heterochromatin metabolisms

    Molecular characterization of signalling complexes involved in G-protein coupled receptor-induced cardiac hypertrophy

    No full text
    In response to pathological stresses, the heart undergoes a remodelling process associated with cardiac hypertrophy. Since sustained hypertrophy can progress to heart failure, there is an intense investigation about the intracellular signalling pathways that control cardiomyocyte growth. Accumulating evidence has demonstrated that most stimuli known to initiate pathological changes associated with the development of cardiac hypertrophy activate G protein-coupled receptors (GPCRs) including the αl-adrenergic- (αl-AR), Angiotensin II- (AT-R) and endothelin-1- (ET-R) receptors. In this context, we have previously identified a cardiac scaffolding protein, called AKAP-Lbc (Α-kinase anchoring protein), with an intrinsic Rho specific guanine nucleotide exchange factor activity, that plays a key role in integrating and transducing hypertrophic signals initiated by these GPCRs (Appert-Collin, Cotecchia et al. 2007). Activated RhoA controls the transcriptional activation of genes involved in cardiomyocyte hypertrophy through signalling pathways that remain to be characterized. Here, we identified the nuclear factor-Kappa Β (NF-κΒ) activating kinase ΙΚΚβ as a novel AKAP-Lbc interacting protein. This raises the hypothesis that AKAP-Lbc might promote cardiomyocyte growth by maintaining a signalling complex that promotes the activation of the pro-hypertrophic transcription factor NF-κΒ. In fact, the activation of NF- κΒ-dependent transcription has been detected in numerous disease contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction, allograft rejection, myocarditis, apoptosis, and more (Hall, Hasday et al. 2006). While it is known by more than a decade that NF-κΒ is a critical mediator of cardiac hypertrophy, it is currently poorly understood how pro-hypertrophic signals controlling NF-κΒ transcriptional activity are integrated and coordinated within cardiomyocytes. In this study, we show that AKAP-Lbc and ΙΚΚβ form a transduction complex in cardiomyocytes that couples activation of αl-ARs to NF-κB-mediated transcriptional reprogramming events associated with cardiomyocyte hypertrophy. In particular, we can show that activation of ΙΚΚβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukine-6 (IL-6), which, in turn, enhances foetal gene expression. These findings indicate that the AKAP-Lbc/ΙΚΚβ complex is critical for selectively directing catecholamine signals to the induction of cardiomyocyte hypertrophy
    corecore