418 research outputs found

    Extending Epigenesis: From Phenotypic Plasticity to the Bio-Cultural Feedback

    Get PDF
    The paper aims at proposing an extended notion of epigenesis acknowledging an actual causal import to the phenotypic dimension for the evolutionary diversification of life forms. Section 1 offers introductory remarks on the issue of epigenesis contrasting it with ancient and modern preformationist views. In Section 2 we propose to intend epigenesis as a process of phenotypic formation and diversification a) dependent on environmental influences, b) independent of changes in the genomic nucleotide sequence, and c) occurring during the whole life span. Then, Section 3 focuses on phenotypic plasticity and offers an overview of basic properties (like robustness, modularity and degeneracy) that allows biological systems to be evolvable – i.e. to have the potentiality of producing phenotypic variation. Successively (Section 4), the emphasis is put on environmentally-induced modification in the regulation of gene expression giving rise to phenotypic variation and diversification. After some brief considerations on the debated issue of epigenetic inheritance (Section 5), the issue of culture (kept in the background of the preceding sections) is considered. The key point is that, in the case of humans and of the evolutionary history of the genus Homo at least, the environment is also, importantly, the cultural environment. Thus, Section 6 argues that a bio-cultural feedback should be acknowledged in the “epigenic” processes leading to phenotypic diversification and innovation in Homo evolution. Finally, Section 7 introduces the notion of “cultural neural reuse”, which refers to phenotypic/neural modifications induced by specific features of the cultural environment that are effective in human cultural evolution without involving genetic changes. Therefore, cultural neural reuse may be regarded as a key instance of the bio-cultural feedback and ultimately of the extended notion of epigenesis proposed in this work

    Modern Radiation Further Improves Survival in Non-Small Cell Lung Cancer: An Analysis of 288,670 Patients

    Get PDF
    Background: Radiation therapy plays an increasingly important role in the treatment of patients with non-small-cell lung cancer (NSCLC). The purpose of the present study is to assess the survival outcomes of radiotherapy treatment compared to other treatment modalities and to determine the potential role of advanced technologies in radiotherapy on improving survival. Methods: We used cancer incidence and survival data from the Surveillance, Epidemiology, and End Results database linked to U.S. Census data to compare survival outcomes of 288,670 patients with stage I-IV NSCLC treated between 1999 and 2008. The primary endpoint was overall survival. Results: Among the 288,670 patients diagnosed with stage I-IV NSCLC, 92,374 (32%) patients received radiotherapy-almost double the number receiving surgery (51,961, 18%). Compared to other treatment groups and across all stages of NSCLC, patients treated with radiotherapy showed greater median and overall survival than patients without radiation treatment (p < 0.0001). Radiotherapy had effectively improved overall survival regardless of age, gender, and histological categorization. Radiotherapy treatment received during the recent time period 2004 - 2008 is correlated with enhanced survival compared to the earlier time period 1999 - 2003. Conclusion: Radiation therapy was correlated with increased overall survival for all patients with primary NSCLC across stages. Combined surgery and radiotherapy treatment also correlates with improved survival, signaling the value of bimodal or multimodal treatments. Population-based increases in overall survival were seen in the recent time period, suggesting the potential role of advanced radiotherapeutic technologies in enhancing survival outcomes for lung cancer patients

    Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)

    Get PDF
    BACKGROUND: Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control. METHODS: Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: 5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease. INTERPRETATION: International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems

    Quantum device fine-tuning using unsupervised embedding learning

    Full text link
    Quantum devices with a large number of gate electrodes allow for precise control of device parameters. This capability is hard to fully exploit due to the complex dependence of these parameters on applied gate voltages. We experimentally demonstrate an algorithm capable of fine-tuning several device parameters at once. The algorithm acquires a measurement and assigns it a score using a variational auto-encoder. Gate voltage settings are set to optimise this score in real-time in an unsupervised fashion. We report fine-tuning times of a double quantum dot device within approximately 40 min

    Deep Reinforcement Learning for Efficient Measurement of Quantum Devices

    Get PDF
    Deep reinforcement learning is an emerging machine learning approach which can teach a computer to learn from their actions and rewards similar to the way humans learn from experience. It offers many advantages in automating decision processes to navigate large parameter spaces. This paper proposes a novel approach to the efficient measurement of quantum devices based on deep reinforcement learning. We focus on double quantum dot devices, demonstrating the fully automatic identification of specific transport features called bias triangles. Measurements targeting these features are difficult to automate, since bias triangles are found in otherwise featureless regions of the parameter space. Our algorithm identifies bias triangles in a mean time of less than 30 minutes, and sometimes as little as 1 minute. This approach, based on dueling deep Q-networks, can be adapted to a broad range of devices and target transport features. This is a crucial demonstration of the utility of deep reinforcement learning for decision making in the measurement and operation of quantum devices

    The neural substrate of positive bias in spontaneous emotional processing

    Get PDF
    Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control

    Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.Published versio

    Machine learning enables completely automatic tuning of a quantum device faster than human experts

    Get PDF
    Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies

    Modeling Sustainability Reporting with Ternary Attractor Neural Networks

    Full text link
    International Conference on Mining Intelligence and Knowledge Exploration. Cluj-Napoca, Romania, December 20–22, 2018This work models the Corporate Sustainability General Reporting Initiative (GRI) using a ternary attractor network. A dataset of years evolution of the GRI reports for a world-wide set of companies was compiled from a recent work and adapted to match the pattern coding for a ternary attractor network. We compare the performance of the network with a classical binary attractor network. Two types of criteria were used for encoding the ternary network, i.e., a simple and weighted threshold, and the performance retrieval was better for the latter, highlighting the importance of the real patterns’ transformation to the three-state coding. The network exceeds the retrieval performance of the binary network for the chosen correlated patterns (GRI). Finally, the ternary network was proved to be robust to retrieve the GRI patterns with initial noise.This work has been supported by Spanish grants MINECO (http://www.mineco.gob.es/) TIN2014-54580-R, TIN2017-84452-R, and by UAMSantander CEAL-AL/2017-08, and UDLA-SIS.MG.17.02
    corecore