643 research outputs found

    Calculation of the Characteristic Functions of Anharmonic Oscillators

    Full text link
    The energy levels of quantum systems are determined by quantization conditions. For one-dimensional anharmonic oscillators, one can transform the Schrodinger equation into a Riccati form, i.e., in terms of the logarithmic derivative of the wave function. A perturbative expansion of the logarithmic derivative of the wave function can easily be obtained. The Bohr-Sommerfeld quantization condition can be expressed in terms of a contour integral around the poles of the logarithmic derivative. Its functional form is B_m(E,g) = n + 1/2, where B is a characteristic function of the anharmonic oscillator of degree m, E is the resonance energy, and g is the coupling constant. A recursive scheme can be devised which facilitates the evaluation of higher-order Wentzel-Kramers-Brioullin (WKB) approximants. The WKB expansion of the logarithmic derivative of the wave function has a cut in the tunneling region. The contour integral about the tunneling region yields the instanton action plus corrections, summarized in a second characteristic function A_m(E,g). The evaluation of A_m(E,g) by the method of asymptotic matching is discussed for the case of the cubic oscillator of degree m=3.Comment: 11 pages, LaTeX; three further typographical errors correcte

    The WKB Approximation without Divergences

    Get PDF
    In this paper, the WKB approximation to the scattering problem is developed without the divergences which usually appear at the classical turning points. A detailed procedure of complexification is shown to generate results identical to the usual WKB prescription but without the cumbersome connection formulas.Comment: 13 pages, TeX file, to appear in Int. J. Theor. Phy

    Fractional Hamiltonian Monodromy from a Gauss-Manin Monodromy

    Full text link
    Fractional Hamiltonian Monodromy is a generalization of the notion of Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A. Sadovskii and B. I. Zhilinskii for energy-momentum maps whose image has a particular type of non-isolated singularities. In this paper, we analyze the notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin Monodromy of a Riemann surface constructed from the energy-momentum map and associated to a loop in complex space which bypasses the line of singularities. We also prove some propositions on Fractional Hamiltonian Monodromy for 1:-n and m:-n resonant systems.Comment: 39 pages, 24 figures. submitted to J. Math. Phy

    Fermi Edge Singularities in the Mesoscopic Regime: II. Photo-absorption Spectra

    Full text link
    We study Fermi edge singularities in photo-absorption spectra of generic mesoscopic systems such as quantum dots or nanoparticles. We predict deviations from macroscopic-metallic behavior and propose experimental setups for the observation of these effects. The theory is based on the model of a localized, or rank one, perturbation caused by the (core) hole left behind after the photo-excitation of an electron into the conduction band. The photo-absorption spectra result from the competition between two many-body responses, Anderson's orthogonality catastrophe and the Mahan-Nozieres-DeDominicis contribution. Both mechanisms depend on the system size through the number of particles and, more importantly, fluctuations produced by the coherence characteristic of mesoscopic samples. The latter lead to a modification of the dipole matrix element and trigger one of our key results: a rounded K-edge typically found in metals will turn into a (slightly) peaked edge on average in the mesoscopic regime. We consider in detail the effect of the "bound state" produced by the core hole.Comment: 16 page

    The Local Time Distribution of a Particle Diffusing on a Graph

    Full text link
    We study the local time distribution of a Brownian particle diffusing along the links on a graph. In particular, we derive an analytic expression of its Laplace transform in terms of the Green's function on the graph. We show that the asymptotic behavior of this distribution has non-Gaussian tails characterized by a nontrivial large deviation function.Comment: 8 pages, two figures (included

    ABJM theory as a Fermi gas

    Full text link
    The partition function on the three-sphere of many supersymmetric Chern-Simons-matter theories reduces, by localization, to a matrix model. We develop a new method to study these models in the M-theory limit, but at all orders in the 1/N expansion. The method is based on reformulating the matrix model as the partition function of an ideal Fermi gas with a non-trivial, one-particle quantum Hamiltonian. This new approach leads to a completely elementary derivation of the N^{3/2} behavior for ABJM theory and N=3 quiver Chern-Simons-matter theories. In addition, the full series of 1/N corrections to the original matrix integral can be simply determined by a next-to-leading calculation in the WKB or semiclassical expansion of the quantum gas, and we show that, for several quiver Chern-Simons-matter theories, it is given by an Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas corresponds to a strong coupling expansion in type IIA theory, and it is dual to the genus expansion. This allows us to calculate explicitly non-perturbative effects due to D2-brane instantons in the AdS background.Comment: 52 pages, 11 figures. v3: references, corrections and clarifications added, plus a footnote on the relation to the recent work by Hanada et a

    Trace formula for noise corrections to trace formulas

    Get PDF
    We consider an evolution operator for a discrete Langevin equation with a strongly hyperbolic classical dynamics and Gaussian noise. Using an integral representation of the evolution operator we investigate the high order corrections to the trace of arbitary power of the operator. The asymptotic behaviour is found to be controlled by sub-dominant saddle points previously neglected in the perturbative expansion. We show that a trace formula can be derived to describe the high order noise corrections.Comment: 4 pages, 2 figure

    Fredholm methods for billiard eigenfunctions in the coherent state representation

    Full text link
    We obtain a semiclassical expression for the projector onto eigenfunctions by means of the Fredholm theory. We express the projector in the coherent state basis, thus obtaining the semiclassical Husimi representation of the stadium eigenfunctions, which is written in terms of classical invariants: periodic points, their monodromy matrices and Maslov indices.Comment: 12 pages, 10 figures. Submitted to Phys. Rev. E. Comments or questions to [email protected]
    corecore