7,389 research outputs found

    Descriptions of reversed yielding in bending

    Get PDF
    Existence of Bauschinger effect in bending-unbending of copper beams has been shown from experiment. In modelling of the Bauschinger effect, it is shown that a significant second plastic penetration can occur with the release of the moment required for an elasticplastic bending of a beam. The theory is given for both linear and parabolic hardening material models. The elastic and plastic strains are developed from each hardening model to express the beam curvature of the unstressed neutral axis. Conditions are expressed, using the normalized stress—strain response of a rectangular beam section, for which the release is purely elastic and elastic—plastic. Under the latter the depth to which a second zone of plasticity penetrates is given. Two stress distributions: one for applying the moment and the other for its release, are sufficient to derive the residual stress. Residuals found for parabolic hardening are believed to be more realistic than those from simpler linear or perfectly plastic models, particularly, where a second penetration is evident

    Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts

    Get PDF
    The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrisic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~ 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter

    The Spectral Signature of Dust Scattering and Polarization in the Near IR to Far UV. I. Optical Depth and Geometry Effects

    Full text link
    Spectropolarimetry from the near IR to the far UV of light scattered by dust provides a valuable diagnostic of the dust composition, grain size distribution and spatial distribution. To facilitate the use of this diagnostic, we present detailed calculations of the intensity and polarization spectral signature of light scattered by optically thin and optically thick dust in various geometries. The polarized light radiative transfer calculations are carried out using the adding-doubling method for a plane-parallel slab, and are extended to an optically thick sphere by integrating over its surface. The calculations are for the Mathis, Rumple & Nordsieck Galactic dust model, and cover the range from 1 μm\mu m to 500 \AA. We find that the wavelength dependence of the scattered light intensity provides a sensitive probe of the optical depth of the scattering medium, while the polarization wavelength dependence provides a probe of the grain scattering properties, which is practically independent of optical depth. We provide a detailed set of predictions, including polarization maps, which can be used to probe the properties of dust through imaging spectropolarimetry in the near IR to far UV of various Galactic and extragalactic objects. In a following paper we use the codes developed here to provide predictions for the dependence of the intensity and polarization on grain size distribution and composition.Comment: 29 pages + 21 figures, accepted for the Astrophysical Journal Supplement February 2000 issue. Some revision, mostly in the introduction and the conclusions, and a couple of correction

    Collapsars - Gamma-Ray Bursts and Explosions in "Failed Supernovae"

    Get PDF
    Using a two-dimensional hydrodynamics code (PROMETHEUS), we study the continued evolution of rotating massive helium stars whose iron core collapse does not produce a successful outgoing shock, but instead forms a black hole. We study the formation of a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter, alpha ~ 0.001 and 0.1. For the standard 14 solar mass model the average accretion rate for 15 s is 0.07 solar masses per second and the total energy deposited along the rotational axes by neutrino annihilation is (1 - 14) x 10**51 erg, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of this energy in the polar regions results in strong relativistic outflow - jets beamed to about 1.5% of the sky. The jets remain highly focused, and are capable of penetrating the star in 5 - 10 s. After the jet breaks through the surface of the star, highly relativistic flow can commence. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that all GRBs longer than a few seconds will make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to make in this model.Comment: Latex, 66 pages including 27 figures (9 color), Submitted to The Astrophysical Journal, latex uses aaspp4.sty. Figures also available at http://www.ucolick.org/~andre

    Astrophysical evidence for the existence of black holes

    Get PDF
    Following a short account of the history of the idea of black holes, we present a review of the current status of the search for observational evidence of their existence aimed at an audience of relativists rather than astronomers or astrophysicists. We focus on two different regimes: that of stellar-mass black holes and that of black holes with the masses of galactic nuclei.Comment: 23 pages, 3 figures, TeX forma

    "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    Get PDF
    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these kludges to be of such high quality (despite their ease of calculation) that it is possible they may play some role in the final search of LISA data for EMRIs.Comment: 29 pages, 11 figures, requires subeqnarray; v2 contains minor changes for consistency with published versio

    Plasma Wakefield Acceleration for Ultrahigh Energy Cosmic Rays

    Full text link
    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma, where the energy gain per distance of a test particle is Lorentz invariant. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f(e) 1/e^2. The environment suitable for such plasma wakefield acceleration can be cosmically abundant. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) through this mechanism in the atmosphere of gamma ray bursts. We show that the acceleration gradient can be as high as G ~ 10^16 eV/cm. The estimated event rate in our model agrees with that from UHECR observations.Comment: 11 pages, 1 figure, submitted to Phys. Rev. Let

    The X-ray emission lines in GRB afterglows: the evidence for the two-component jet model

    Full text link
    Recently, X-ray emission lines have been observed in X-ray afterglows of several γ\gamma-ray bursts. It is a major breakthrough for understanding the nature of the progenitors. It is proposed that the X-ray emission lines can be well explained by the Geometry-Dominated models, but in these models the illuminating angle is much larger than that of the collimated jet of the γ\gamma-ray bursts(GRBs). For GRB 011211, we obtain the illuminating angle is about θ45\theta\sim45^{\circ}, while the angle of GRB jet is only 3.63.6^{\circ}, so we propose that the outflow of the GRBs with emission lines should have two distinct components. The wide component illuminates the reprocessing material, and produces the emission lines, while the narrow one produces the γ\gamma-ray bursts. The observations show that the energy for producing the emission lines is higher than that of the GRBs. In this case, when the wide component dominates the afterglows, a bump will appear in the GRBs afterglows. For GRB 011211, the emergence time of the bump is less than 0.05 days after the GRB, it is obviously too early for the observation to catch it. With the presence of the X-ray emission lines there should also be a bright emission component between the UV and the soft X-rays. These features can be tested by the SwiftSwift satellite in the near future.Comment: 10 pags, 1 figure, ChJAA in pres
    corecore