40,077 research outputs found
Local support against gravity in magneto-turbulent fluids
Comparisons of the integrated thermal pressure support of gas against its
gravitational potential energy lead to critical mass scales for gravitational
instability such as the Jeans and the Bonnor-Ebert masses, which play an
important role in analysis of many physical systems, including the heuristics
of numerical simulations. In a strict theoretical sense, however, neither the
Jeans nor the Bonnor-Ebert mass are meaningful when applied locally to
substructure in a self-gravitating turbulent medium. For this reason, we
investigate the local support by thermal pressure, turbulence, and magnetic
fields against gravitational compression through an approach that is
independent of these concepts. At the centre of our approach is the dynamical
equation for the divergence of the velocity field. We carry out a statistical
analysis of the source terms of the local compression rate (the negative time
derivative of the divergence) for simulations of forced self-gravitating
turbulence in periodic boxes with zero, weak, and moderately strong mean
magnetic fields (measured by the averages of the magnetic and thermal
pressures). We also consider the amplification of the magnetic field energy by
shear and by compression. Thereby, we are able to demonstrate that the support
against gravity is dominated by thermal pressure fluctuations, although
magnetic pressure also yields a significant contribution. The net effect of
turbulence in the highly supersonic regime, however, is to enhance compression
rather than supporting overdense gas even if the vorticity is very high. This
is incommensurate with the support of the highly dynamical substructures in
magneto-turbulent fluids being determined by local virial equilibria of volume
energies without surface stresses.Comment: 21 pages, 25 figures, revised version accepted for publication by
MNRA
Charged particle concepts for fog dispersion
Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described
Monte Carlo calculations of energy depositions and radiation transport. Volume 1 - Validation of COHORT codes
Monte Carlo codes for IBM 7090 digital computer to calculate radiation heating in propellant tanks, and radiation environment about nuclear rocket stag
Programmable networks for quantum algorithms
The implementation of a quantum computer requires the realization of a large
number of N-qubit unitary operations which represent the possible oracles or
which are part of the quantum algorithm. Until now there are no standard ways
to uniformly generate whole classes of N-qubit gates. We have developed a
method to generate arbitrary controlled phase shift operations with a single
network of one-qubit and two-qubit operations. This kind of network can be
adapted to various physical implementations of quantum computing and is
suitable to realize the Deutsch-Jozsa algorithm as well as Grover's search
algorithm.Comment: 4 pages. Accepted version; Journal-ref. adde
Role of climate feedback on methane and ozone studied with a coupled ocean-atmosphere-chemistry model.
Study of interface asymmetry in InAs–GaSb heterojunctions
We present reflection high energy electron diffraction, secondary ion mass spectroscopy, scanning tunneling microscopy and x‐ray photoelectron spectroscopy studies of the abruptness of InAs–GaSb interfaces. We find that the interface abruptness depends on growth order: InAs grown on GaSb is extended, while GaSb grown on InAs is more abrupt. We first present observations of the interfacial asymmetry, including measurements of band alignments as a function of growth order. We then examine more detailed studies of the InAs–GaSb interface to determine the mechanisms causing the extended interface. Our results show that Sb incorporation into the InAs overlayer and As exchange for Sb in the GaSb underlayer are the most likely causes of the interfacial asymmetry
Stable Isotropic Cosmological Singularities in Quadratic Gravity
We show that, in quadratic lagrangian theories of gravity, isotropic
cosmological singularities are stable to the presence of small scalar, vector
and tensor inhomogeneities. Unlike in general relativity, a particular exact
isotropic solution is shown to be the stable attractor on approach to the
initial cosmological singularity. This solution is also known to act as an
attractor in Bianchi universes of types I, II and IX, and the results of this
paper reinforce the hypothesis that small inhomogeneous and anisotropic
perturbations of this attractor form part of the general cosmological solution
to the field equations of quadratic gravity. Implications for the existence of
a 'gravitational entropy' are also discussed.Comment: 18 pages, no figure
Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model
The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes – in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range
Scanning tunneling microscopy of lnAs/GaSb superlattices: Subbands, interface roughness, and interface asymmetry
Scanning tunneling microscopy and spectroscopy is used to characterize InAs/GaSb superlattices, grown by molecular-beam epitaxy. Roughness at the interfaces between InAs and GaSb layers is directly observed in the images, and a quantitative spectrum of this roughness is obtained. Electron subbands in the InAs layers are resolved in spectroscopy. Asymmetry between the interfaces of InAs grown on GaSb compared with GaSb grown on In As is seen in voltage-dependent imaging. Detailed
spectroscopic study of the interfaces reveals some subtle differences between the two in terms of their valence-band onsets and conduction-band state density. These differences are interpreted in a model in which the GaSb on InAs interface has an abrupt InSb-like structure, but at the InAs on GaSb interface some Sb grading occurs into the InAs overlayer
X-ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface
X-ray photoelectron spectroscopy has been used to measure levels of anion cross-incorporation and to study interface formation for the mixed anion GaSb/lnAs heterojunction. Anion
cross-incorporation was measured in 20 Å thick GaSb layers grown on lnAs, and 20 Å thick InAs layers grown on GaSb for cracked and uncracked sources. It was found that significantly
less anion cross-incorporation occurs in structures grown with cracked sources. Interface formation was investigated by studying Sb soaks of InAs surfaces and As soaks of GaSb surfaces
as a function of cracker power and soak time. Exchange of the group V surface atoms was found to be an increasing function of both cracker power and soak time. We find that further
optimization of current growth parameters may be possible by modifying the soak time used at interfaces
- …
