752 research outputs found

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Gaia Data Release 1: Testing parallaxes with local Cepheids and RR Lyrae stars

    Get PDF
    Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (M V -[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σ Ω /Ω < 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σ Ω /Ω < 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σ Ω /Ω < 0.5). The new relations were computed using multi-band (V,I,J,K s ) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and M V - [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods. Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the Hipparcos measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive. Conclusions. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018. © ESO, 2017

    Study protocol for the OligoMetastatic Esophagogastric Cancer (OMEC) project: A multidisciplinary European consensus project on the definition and treatment for oligometastatic esophagogastric cancer

    Get PDF
    Background: A uniform definition and treatment for oligometastatic esophagogastric cancer is currently lacking. However, a comprehensive definition of oligometastatic esophagogastric cancer is necessary to initiate studies on local treatment strategies (e.g. metastasectomy or stereotactic radiotherapy) and new systemic therapy agents in this group of patients. For this purpose, the OligoMetastatic Esophagogastric Cancer (OMEC) project was established. The OMEC-project aims to develop a multidisciplinary European consensus statement on the definition, diagnosis, and treatment for oligometastatic esophagogastric cancer and provide a framework for prospective studies to improve outcomes of these patients. Methods: The OMEC-project consists of five studies, including 1) a systematic review on definitions and outcomes of oligometastatic esophagogastric cancer; 2) real-life clinical scenario discussions in multidisciplinary expert teams to determine the variation in the definition and treatment strategies; 3) Delphi consensus process through a starting meeting, two Delphi questionnaire rounds, and a consensus meeting; 4) publication of a multidisciplinary European consensus statement; and 5) a prospective clinical trial in patients with oligometastatic esophagogastric cancer. Discussion: The OMEC project aims to establish a multidisciplinary European consensus statement for oligometastatic esophagogastric cancer and aims to initiate a prospective clinical trial to improve outcomes for these patients. Recommendations from OMEC can be used to update the relevant guidelines on treatment for patients with (oligometastatic) esophagogastric cancer

    Euclid: modelling massive neutrinos in cosmology - a code comparison

    Get PDF
    Material outgassing in a vacuum leads to molecular contamination, a well-known problem in spaceflight. Water is the most common contaminant in cryogenic spacecraft, altering numerous properties of optical systems. Too much ice means that Euclid’s calibration requirements cannot be met anymore. Euclid must then be thermally decontaminated, which is a month-long risky operation. We need to understand how ice affects our data to build adequate calibration and survey plans. A comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records. We then review the formation of thin ice films, and find that for Euclid a mix of amorphous and crystalline ices is expected. Their surface topography – and thus optical properties – depend on the competing energetic needs of the substrate-water and the water-water interfaces, and they are hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images of thin ice films. Sophisticated tools exist to compute contamination rates, and we must understand their underlying physical principles and uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of outgassing estimates. We developed a water transport model to compute contamination rates in Euclid, and find agreement with industry estimates within the uncertainties. Tests of the Euclid flight hardware in space simulators did not pick up significant contamination signals, but they were also not geared towards this purpose; our in-flight calibration observations will be much more sensitive. To derive a calibration and decontamination strategy, we need to understand the link between the amount of ice in the optics and its effect on the data. There is little research about this, possibly because other spacecraft can decontaminate more easily, quenching the need for a deeper understanding. In our second paper, we quantify the impact of iced optics on Euclid’s data

    The heterogeneous effects of COVID-19 lockdowns on crime across the world

    Full text link
    There is a vast literature evaluating the empirical association between stay-at-home policies and crime during the COVID-19 pandemic. However, these academic efforts have primarily focused on the effects within specific cities or regions rather than adopting a cross-national comparative approach. Moreover, this body of literature not only generally lacks causal estimates but also has overlooked possible heterogeneities across different levels of stringency in mobility restrictions. This paper exploits the spatial and temporal variation of government responses to the pandemic in 45 cities across five continents to identify the causal impact of strict lockdown policies on the number of offenses reported to local police. We find that cities that implemented strict lockdowns experienced larger declines in some crime types (robbery, burglary, vehicle theft) but not others (assault, theft, homicide). This decline in crime rates attributed to more stringent policy responses represents only a small proportion of the effects documented in the literature

    Euclid preparation. XXIX. Water ice in spacecraft part I:The physics of ice formation and contamination

    Get PDF
    Molecular contamination is a well-known problem in space flight. Water is the most common contaminant and alters numerous properties of a cryogenic optical system. Too much ice means that Euclid's calibration requirements and science goals cannot be met. Euclid must then be thermally decontaminated, a long and risky process. We need to understand how iced optics affect the data and when a decontamination is required. This is essential to build adequate calibration and survey plans, yet a comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records, and we review the formation of thin ice films. A mix of amorphous and crystalline ices is expected for Euclid. Their surface topography depends on the competing energetic needs of the substrate-water and the water-water interfaces, and is hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images. Industrial tools exist to estimate contamination, and we must understand their uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of these tools. We developed a water transport model to compute contamination rates in Euclid, and find general agreement with industry estimates. Tests of the Euclid flight hardware in space simulators did not pick up contamination signals; our in-flight calibrations observations will be much more sensitive. We must understand the link between the amount of ice on the optics and its effect on Euclid's data. Little research is available about this link, possibly because other spacecraft can decontaminate easily, quenching the need for a deeper understanding. In our second paper we quantify the various effects of iced optics on spectrophotometric data

    Gaia Focused Product Release: Sources from Service Interface Function image analysis: Half a million new sources in omega Centauri

    Get PDF
    CONTEXT: Gaia's readout window strategy is challenged by very dense fields in the sky. Therefore, in addition to standard Gaia observations, full Sky Mapper (SM) images were recorded for nine selected regions in the sky. A new software pipeline exploits these Service Interface Function (SIF) images of crowded fields (CFs), making use of the availability of the full two-dimensional (2D) information. This new pipeline produced half a million additional Gaia sources in the region of the omega Centauri (ω Cen) cluster, which are published with this Focused Product Release. We discuss the dedicated SIF CF data reduction pipeline, validate its data products, and introduce their Gaia archive table. AIMS: Our aim is to improve the completeness of the Gaia source inventory in a very dense region in the sky, ω Cen. METHODS: An adapted version of Gaia's Source Detection and Image Parameter Determination software located sources in the 2D SIF CF images. These source detections were clustered and assigned to new SIF CF or existing Gaia sources by Gaia s cross-match software. For the new sources, astrometry was calculated using the Astrometric Global Iterative Solution software, and photometry was obtained in the Gaia DR3 reference system. We validated the results by comparing them to the public Gaia DR3 catalogue and external Hubble Space Telescope data. RESULTS: With this Focused Product Release, 526 587 new sources have been added to the Gaia catalogue in ω Cen. Apart from positions and brightnesses, the additional catalogue contains parallaxes and proper motions, but no meaningful colour information. While SIF CF source parameters generally have a lower precision than nominal Gaia sources, in the cluster centre they increase the depth of the combined catalogue by three magnitudes and improve the source density by a factor of ten. CONCLUSIONS: This first SIF CF data publication already adds great value to the Gaia catalogue. It demonstrates what to expect for the fourth Gaia catalogue, which will contain additional sources for all nine SIF CF regions

    Gaia Data Release 2: The astrometric solution

    Get PDF
    Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the astrometry task. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G<14 mag) sources, 0.1 mas at G=17 mag, and 0.7 mas at G=20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas/yr, respectively. The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas/yr. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas/yr in proper motion are seen on small (<1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.Includes STFC

    Public Claims about Automatic External Defibrillators: An Online Consumer Opinions Study

    Get PDF
    Patients are no longer passive recipients of health care, and increasingly engage in health communications outside of the traditional patient and health care professional relationship. As a result, patient opinions and health related judgements are now being informed by a wide range of social, media, and online information sources. Government initiatives recognise self-delivery of health care as a valuable means of responding to the anticipated increased global demand for health resources. Automated External Defibrillators (AEDs), designed for the treatment of Sudden Cardiac Arrest (SCA), have recently become available for 'over the counter' purchase with no need for a prescription. This paper explores the claims and argumentation of lay persons and health care practitioners and professionals relating to these, and how these may impact on the acceptance, adoption and use of these devices within the home context. METHODS: We carry out a thematic content analysis of a novel form of Internet-based data: online consumer opinions of AED devices posted on Amazon.com, the world's largest online retailer. A total of 83 online consumer reviews of home AEDs are analysed. The analysis is both inductive, identifying themes that emerged from the data, exploring the parameters of public debate relating to these devices, and also driven by theory, centring around the parameters that may impact upon the acceptance, adoption and use of these devices within the home as indicated by the Technology Acceptance Model (TAM). RESULTS: Five high-level themes around which arguments for and against the adoption of home AEDs are identified and considered in the context of TAM. These include opinions relating to device usability, usefulness, cost, emotional implications of device ownership, and individual patient risk status. Emotional implications associated with AED acceptance, adoption and use emerged as a notable factor that is not currently reflected within the existing TAM. CONCLUSIONS: The value and credibility of the findings of this study are considered within the context of existing AED research, and related to technology acceptance theory, and current methods and practice. From a methodological perspective, this study demonstrates the potential value of online consumer reviews as a novel data source for exploring the parameters of public debate relating to emerging health care technologies

    The Euclid mission: status after launch and early operations

    Get PDF
    During its 6-year nominal mission, Euclid shall survey one third of the sky, enabling us to examine the spatial distributions of dark and luminous matter during the past 10 Gyr of cosmic history. The Euclid satellite was successfully launched on a SpaceX Falcon 9 launcher from Cape Canaveral on 1 July 2023 and is fully operational in a halo orbit around the Second Sun-Earth Lagrange point. We present an overview of the expected and unexpected findings during the early phases of the mission, in the context of technological heritage and lessons learnt. The first months of the mission were dedicated to the commissioning of the spacecraft, telescope and instruments, followed by a phase to verify the scientific performance and to carry out the in-orbit calibrations. We report that the key enabling scientific elements, the 1.2-meter telescope and the two scientific instruments, a visual imager (VIS) and a near-infrared spectrometer and photometer (NISP), show an inorbit performance in line with the expectations from ground tests. The scientific analysis of the observations from the Early Release Observations (ERO) program done before the start of the nominal mission showed sensitivities better than the prelaunch requirements. The nominal mission started in December 2023, and we allocated a 6-month early survey operations phase to closely monitor the performance of the sky survey. We conclude with an outlook of the activities for the remaining mission in the light of the in-orbit performance
    corecore