1,387 research outputs found
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU
International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations
Genetic Improvement of Software: a Comprehensive Survey
Genetic improvement (GI) uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of GI back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. GI has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between GI and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields
Forward Neutral Pion Transverse Single Spin Asymmetries in p+p Collisions at \sqrt{s}=200 GeV
We report precision measurements of the Feynman-x dependence, and first
measurements of the transverse momentum dependence, of transverse single spin
asymmetries for the production of \pi^0 mesons from polarized proton collisions
at \sqrt{s}=200 GeV. The x_F dependence of the results is in fair agreement
with perturbative QCD model calculations that identify orbital motion of quarks
and gluons within the proton as the origin of the spin effects. Results for the
p_T dependence at fixed x_F are not consistent with pQCD-based calculations.Comment: 6 pages, 4 figure
N-methylformamide: antitumour activity and metabolism in mice.
The antitumour activities of N-methylformamide, N-ethylformamide and formamide against a number of murine tumours in vivo (Sarcoma 180, M5076 ovarian sarcoma and TLX5 lymphoma) have been estimated. In all cases N-methyl-formamide had significant activity, formamide had marginal or no activity and N-ethylformamide had no significant activity. N-methylformamide and N-ethylformamide were equitoxic to the TLX5 lymphoma in vitro. Formamide was found as a metabolite in the plasma and urine of animals given N-methylformamide and N-ethylformamide, but excretion profiles do not support the hypothesis that formamide is an active antitumour species formed from N-alkylformamides. No appreciable metabolism of N-methylformamide occurred under a variety of conditions with liver preparations in vitro. N-methylformamide, but not N-ethylformamide or formamide, reduced liver soluble non-protein thiols by 59.8% 1 h after administration of an effective antitumour dose
BRCA1 5382insC mutation in sporadic and familial breast and ovarian carcinoma in Scotland.
A restriction site-generating polymerase chain reaction (RG-PCR) assay was developed to detect the BRCA1 5382insC mutation that has been reported in multiple, apparently unrelated breast/ovarian carcinoma families. The assay has been used to screen tumour DNA from 250 breast cancer patients (aged 19-86 years) and from 80 ovarian cancer patients (aged 25-90 years) in a local population of patients with no known family history. Altogether, 0/80 (0%) ovarian and 1/250 (0.4%) breast tumour DNAs were found to have the 5382insC mutation. The sole positive case was a 26-year-old woman (BC185) with no known family history. One of the reasons for carrying out this analysis was that the 5382insC mutation had previously been shown to segregate with the disease in a very large Scottish 'West Lothian' kindred having breast/ovarian carcinoma. To investigate whether this apparently isolated case and the known family might be related, haplotypes for the markers D17S855, D17S1322, D17S1323 and D17S1327 were analysed. The mutant haplotype in the large kindred was identical to that reported in all other 5382insC mutation families for all markers with the exception of D17S1327. This implies that there has been a recombination event at the telomeric end of common ancestral haplotype in this family. Since the isolated case we identified carries the 'complete' common haplotype, it is unlikely that she is closely related to the West Lothian family
A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement
Citation: Chaffin, A. S., Huang, Y. F., Smith, S., Bekele, W. A., Babiker, E., Gnanesh, B. N., . . . Tinker, N. A. (2016). A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement. Plant Genome, 9(2), 21. doi:10.3835/plantgenome2015.10.0102Hexaploid oat (Avena sativa L., 2n = 6x = 42) is a member of the Poaceae family and has a large genome (similar to 12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice (Oryza sativa L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes
3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and Experimental Hole Quality Analysis
Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin (~2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process
NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data
Background: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed
- …
