6,960 research outputs found

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses

    Method of preparing zinc orthotitanate pigment

    Get PDF
    Zinc orthotitanate suitable for use as a pigment for spacecraft thermal control coatings is prepared by heating a slightly zinc deficient reaction mixture of precipitated oxalates of zinc and titanium. The reaction mixture can be formed by coprecipitation of zinc and titanium oxalates from chloride solution or by mixing separately precipitated oxalates. The mixture is first heated to 400 to 600 C to remove volatiles and is then rapidly heated at 900 to 1200 C. Zinc orthotitanate produced by this method exhibits the very fine particle size needed for thermal control coatings as well as stability in a space environment

    A continuum model for the dynamics of the phase transition from slow-wave sleep to REM sleep

    Get PDF
    Previous studies have shown that activated cortical states (awake and rapid eye-movement (REM) sleep), are associated with increased cholinergic input into the cerebral cortex. However, the mechanisms that underlie the detailed dynamics of the cortical transition from slow-wave to REM sleep have not been quantitatively modeled. How does the sequence of abrupt changes in the cortical dynamics (as detected in the electrocorticogram) result from the more gradual change in subcortical cholinergic input? We compare the output from a continuum model of cortical neuronal dynamics with experimentally-derived rat electrocorticogram data. The output from the computer model was consistent with experimental observations. In slow-wave sleep, 0.5–2-Hz oscillations arise from the cortex jumping between “up” and “down” states on the stationary-state manifold. As cholinergic input increases, the upper state undergoes a bifurcation to an 8-Hz oscillation. The coexistence of both oscillations is similar to that found in the intermediate stage of sleep of the rat. Further cholinergic input moves the trajectory to a point where the lower part of the manifold in not available, and thus the slow oscillation abruptly ceases (REM sleep). The model provides a natural basis to explain neuromodulator-induced changes in cortical activity, and indicates that a cortical phase change, rather than a brainstem “flip-flop”, may describe the transition from slow-wave sleep to REM

    Spectral properties of a narrow-band Anderson model

    Full text link
    We consider single-particle spectra of a symmetric narrow-band Anderson impurity model, where the host bandwidth DD is small compared to the hybridization strength Δ0\Delta_{0}. Simple 2nd order perturbation theory (2PT) in UU is found to produce a rich spectral structure, that leads to rather good agreement with extant Lanczos results and offers a transparent picture of the underlying physics. It also leads naturally to two distinct regimes of spectral behaviour, Δ0Z/D1\Delta_{0}Z/D\gg 1 and 1\ll 1 (with ZZ the quasi-particle weight), whose existence and essential characteristics are discussed and shown to be independent of 2PT itself. The self-energy Σiω\Sigma_{i\omega} is also examined beyond the confines of PT. It is argued that on frequency scales of order ωDelta0D\omega\sim\sqrt{Delta_{0}D}, the self-energy in {\em strong} coupling is given precisely by the 2PT result, and we point out that the resultant poles in Σiω\Sigma_{i\omega} connect continuously to that characteristic of the atomic limit. This in turn offers a natural rationale for the known inability of the skeleton expansion to capture such behaviour, and points to the intrinsic dangers of partial infinite-order summations that are based on PT in UU.Comment: 10 pages, 2 Postscript figures, uses RevTex 3.1; accepted for publication in Phys. Rev. B1

    Mott-Hubbard transition in infinite dimensions

    Full text link
    We calculate the zero-temperature gap and quasiparticle weight of the half-filled Hubbard model with a random dispersion relation. After extrapolation to the thermodynamic limit, we obtain reliable bounds on these quantities for the Hubbard model in infinite dimensions. Our data indicate that the Mott-Hubbard transition is continuous, i.e., that the quasiparticle weight becomes zero at the same critical interaction strength at which the gap opens.Comment: 4 pages, RevTeX, 5 figures included with epsfig Final version for PRL, includes L=14 dat

    Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow

    Get PDF
    [1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45 % reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese C

    Decreased dopamine activity predicts relapse in methamphetamine abusers.

    Get PDF
    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes

    Axiomatic geometrical optics, Abraham-Minkowski controversy, and photon properties derived classically

    Full text link
    By restating geometrical optics within the field-theoretical approach, the classical concept of a photon (and, more generally, any elementary excitation) in arbitrary dispersive medium is introduced, and photon properties are calculated unambiguously. In particular, the canonical and kinetic momenta carried by a photon, as well as the two corresponding energy-momentum tensors of a wave, are derived from first principles of Lagrangian mechanics. As an example application of this formalism, the Abraham-Minkowski controversy pertaining to the definitions of these quantities is resolved for linear waves of arbitrary nature, and corrections to the traditional formulas for the photon kinetic energy-momentum are found. Several other applications of axiomatic geometrical optics to electromagnetic waves are also presented

    Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors

    Get PDF
    Large-scale synchronous firing of neurons during seizures is modulated by electrotonic coupling between neurons via gap junctions. To explore roles for connexin36 (Cx36) gap junctions in seizures, we examined the seizure threshold of connexin36 knockout (Cx36KO) mice using a pentylenetetrazol (PTZ) model

    Functional renormalization group approach to zero-dimensional interacting systems

    Full text link
    We apply the functional renormalization group method to the calculation of dynamical properties of zero-dimensional interacting quantum systems. As case studies we discuss the anharmonic oscillator and the single impurity Anderson model. We truncate the hierarchy of flow equations such that the results are at least correct up to second order perturbation theory in the coupling. For the anharmonic oscillator energies and spectra obtained within two different functional renormalization group schemes are compared to numerically exact results, perturbation theory, and the mean field approximation. Even at large coupling the results obtained using the functional renormalization group agree quite well with the numerical exact solution. The better of the two schemes is used to calculate spectra of the single impurity Anderson model, which then are compared to the results of perturbation theory and the numerical renormalization group. For small to intermediate couplings the functional renormalization group gives results which are close to the ones obtained using the very accurate numerical renormalization group method. In particulare the low-energy scale (Kondo temperature) extracted from the functional renormalization group results shows the expected behavior.Comment: 22 pages, 8 figures include
    corecore