3,444 research outputs found
Constraints on the Quasiparticle Density of States in High- Superconductors
In this Letter we present new tunneling data on YBaCuO thin films
by low temperature scanning tunneling spectroscopy. Unusual peak-dip-hump
features, previously reported in BiSrCaCuO, are also
found in YBaCuO. To analyse these common signatures we propose a
new heuristic model in which, in addition to the d-wave symmetry, the gap
function is energy dependent. A simple expression for the quasiparticle density
of states is derived, giving an excellent agreement with the experiment. The
dynamics of the quasiparticle states and the energy scales involved in the
superconducting transition are discussed.Comment: 4 page Letter with 3 figure
Local tunneling spectroscopy of the electron-doped cuprate Sm1.85Ce0.15CuO4
We present local tunneling spectroscopy in the optimally electron-doped
cuprate Sm2-xCexCuO4 x=0.15. A clear signature of the superconducting gap is
observed with an amplitude ranging from place to place and from sample to
sample (Delta~3.5-6meV). Another spectroscopic feature is simultaneously
observed at high energy above \pm 50meV. Its energy scale and temperature
evolution is found to be compatible with previous photoemission and optical
experiments. If interpreted as the signature of antiferromagnetic order in the
samples, these results could suggest the coexistence on the local scale of
antiferromagnetism and superconductivity on the electron-doped side of cuprate
superconductors
Two Gap State Density in MgB: A True Bulk Property or A Proximity Effect?
We report on the temperature dependence of the quasiparticle density of
states (DOS) in the simple binary compound MgB2 directly measured using
scanning tunneling microscope (STM). To achieve high quality tunneling
conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The
``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically
flat surface. At low temperature the tunneling conductance spectra show a gap
at the Fermi energy followed by two well-pronounced conductance peaks on each
side. They appear at voltages V mV and V mV. With rising temperature both peaks disappear at the Tc of the bulk
MgB2, a behavior consistent with the model of two-gap superconductivity. The
explanation of the double-peak structure in terms of a particular proximity
effect is also discussed.Comment: 4 pages, 3 figure
Probing the superfluid velocity with a superconducting tip: the Doppler shift effect
We address the question of probing the supercurrents in superconducting (SC)
samples on a local scale by performing Scanning Tunneling Spectroscopy (STS)
experiments with a SC tip. In this configuration, we show that the tunneling
conductance is highly sensitive to the Doppler shift term in the SC
quasiparticle spectrum of the sample, thus allowing the local study of the
superfluid velocity. Intrinsic screening currents, such as those surrounding
the vortex cores in a type II SC in a magnetic field, are directly probed. With
Nb tips, the STS mapping of the vortices, in single crystal 2H-NbSe_2, reveals
both the vortex cores, on the scale of the SC coherence length , and the
supercurrents, on the scale of the London penetration length . A
subtle interplay between the SC pair potential and the supercurrents at the
vortex edge is observed. Our results open interesting prospects for the study
of screening currents in any superconductor.Comment: 4 pages, 5 figure
Scanning Tunneling Spectroscopy on the novel superconductor CaC6
We present scanning tunneling microscopy and spectroscopy of the newly
discovered superconductor CaC. The tunneling conductance spectra, measured
between 3 K and 15 K, show a clear superconducting gap in the quasiparticle
density of states. The gap function extracted from the spectra is in good
agreement with the conventional BCS theory with = 1.6 0.2
meV. The possibility of gap anisotropy and two-gap superconductivity is also
discussed. In a magnetic field, direct imaging of the vortices allows to deduce
a coherence length in the ab plane 33 nm
Probing the superconducting condensate on a nanometer scale
Superconductivity is a rare example of a quantum system in which the
wavefunction has a macroscopic quantum effect, due to the unique condensate of
electron pairs. The amplitude of the wavefunction is directly related to the
pair density, but both amplitude and phase enter the Josephson current : the
coherent tunneling of pairs between superconductors. Very sensitive devices
exploit the superconducting state, however properties of the {\it condensate}
on the {\it local scale} are largely unknown, for instance, in unconventional
high-T cuprate, multiple gap, and gapless superconductors.
The technique of choice would be Josephson STS, based on Scanning Tunneling
Spectroscopy (STS), where the condensate is {\it directly} probed by measuring
the local Josephson current (JC) between a superconducting tip and sample.
However, Josephson STS is an experimental challenge since it requires stable
superconducting tips, and tunneling conditions close to atomic contact. We
demonstrate how these difficulties can be overcome and present the first
spatial mapping of the JC on the nanometer scale. The case of an MgB film,
subject to a normal magnetic field, is considered.Comment: 7 pages, 6 figure
Nanometer Scale Mapping of the Density of States in an Inhomogeneous Superconductor
Using high speed scanning tunneling spectroscopy, we perform a full mapping
of the quasiparticle density of states (DOS) in single crystals of
BiPbSrCaCuO(2212). The measurements carried out at 5 K showed a complex spatial
pattern of important variations of the local DOS on the nanometer scale.
Superconducting areas are co-existing with regions of a smooth and larger
gap-like DOS structure. The superconducting regions are found to have a minimum
size of about 3 nm. The role of Pb-introduced substitutional disorder in the
observed spatial variations of the local DOS is discussed.Comment: 4 page Letter with 3 figures (2 color figures
Pointwise consistency of the kriging predictor with known mean and covariance functions
This paper deals with several issues related to the pointwise consistency of
the kriging predictor when the mean and the covariance functions are known.
These questions are of general importance in the context of computer
experiments. The analysis is based on the properties of approximations in
reproducing kernel Hilbert spaces. We fix an erroneous claim of Yakowitz and
Szidarovszky (J. Multivariate Analysis, 1985) that the kriging predictor is
pointwise consistent for all continuous sample paths under some assumptions.Comment: Submitted to mODa9 (the Model-Oriented Data Analysis and Optimum
Design Conference), 14th-19th June 2010, Bertinoro, Ital
Quasiparticle spectrum of the cuprate BiSrCaCuO: Possible connection to the phase diagram
We previously introduced [T. Cren et al., Europhys. Lett. 52, 203 (2000)] an
energy-dependant gap function, , that fits the unusual shape of the
quasiparticle (QP) spectrum for both BiSrCaCuO and YBaCuO. A simple
anti-resonance in accounts for the pronounced QP peaks in the
density of states, at an energy , and the dip feature at a higher
energy, . Here we go a step further : our gap function is consistent
with the () phase diagram, where is the carrier density. For large QP
energies (), the total spectral gap is , where is tied to the condensation
energy. From the available data, a simple -dependance of and
is found, in particular .
These two distinct energy scales of the superconducting state are interpreted
by comparing with the normal and pseudogap states. The various forms of the QP
density of states, as well as the spectral function , are discussed
Nodal liquid and s-wave superconductivity in transition metal dichalcogenides
We explore the physical properties of a unified microscopic theory for the
coexistence of superconductivity and charge density waves in two-dimensional
transition metal dichalcogenides. In the case of particle-hole symmetry the
elementary particles are Dirac fermions at the nodes of the charge density wave
gap. When particle-hole symmetry is broken electron (hole) pockets are formed
around the Fermi surface. The superconducting ground state emerges from the
pairing of nodal quasi-particles mediated by acoustic phonons via a
piezoelectric coupling. We calculate several properties in the s-wave
superconducting phase, including specific heat, ultra-sound absorption, nuclear
magnetic relaxation, thermal, and optical conductivities. In the case with
particle-hole symmetry, the specific heat jump at the transition deviates
strongly from ordinary superconductors. The nuclear magnetic response shows an
anomalous anisotropy due to the broken time-reversal symmetry of the
superconducting gap, induced by the triple charge density wave state. The loss
of lattice inversion symmetry in the charge density wave phase leads to
anomalous coherence factors in the optical conductivity and to the appearance
of an absorption edge at the optical gap energy. Furthermore, optical and
thermal conductivities display anomalous peaks in the infrared when
particle-hole symmetry is broken.Comment: 23 pages, 16 figures. Published versio
- …
