3,697 research outputs found
Accuracy of computerized tomography in determining hepatic tumor size in patients receiving liver transplantation or resection
Computerized tomography (CT) of liver is used in oncologic practice for staging tumors, evaluating response to treatment, and screening patients for hepatic resection. Because of the impact of CT liver scan on major treatment decisions, it is important to assess its accuracy. Patients undergoing liver transplantation or resection provide a unique opportunity to test the accuracy of hepatic-imaging techniques by comparison of finding of preoperative CT scan with those at gross pathologic examination of resected specimens. Forty-one patients who had partial hepatic resection (34 patients) or liver transplantation (eight patients) for malignant (30 patients) or benign (11 patients) tumors were evaluable. Eight (47%) of 17 patients with primary malignant liver tumors, four (31%) of 13 patients with metastatic liver tumors, and two (20%) of 10 patients with benign liver tumors had tumor nodules in resected specimens that were not apparent on preoperative CT studies. These nodules varied in size from 0.1 to 1.6 cm. While 11 of 14 of these nodules were 1.0 cm. These results suggest that conventional CT alone may be insufficient to accurately determine the presence or absence of liver metastases, extent of liver involvement, or response of hepatic metastases to treatment
Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins
Without invoking the Markov approximation, we derive formulas for vibrational
energy relaxation (VER) and dephasing for an anharmonic system oscillator using
a time-dependent perturbation theory. The system-bath Hamiltonian contains more
than the third order coupling terms since we take a normal mode picture as a
zeroth order approximation. When we invoke the Markov approximation, our theory
reduces to the Maradudin-Fein formula which is used to describe VER properties
of glass and proteins. When the system anharmonicity and the renormalization
effect due to the environment vanishes, our formulas reduce to those derived by
Mikami and Okazaki invoking the path-integral influence functional method [J.
Chem. Phys. 121 (2004) 10052]. We apply our formulas to VER of the amide I mode
of a small amino-acide like molecule, N-methylacetamide, in heavy water.Comment: 16 pages, 5 figures, 5 tables, submitted to J. Chem. Phy
Image resonance in the many-body density of states at a metal surface
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account
Lifetimes of image-potential states on copper surfaces
The lifetime of image states, which represent a key quantity to probe the
coupling of surface electronic states with the solid substrate, have been
recently determined for quantum numbers on Cu(100) by using
time-resolved two-photon photoemission in combination with the coherent
excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We
here report theoretical investigations of the lifetime of image states on
copper surfaces. We evaluate the lifetimes from the knowledge of the
self-energy of the excited quasiparticle, which we compute within the GW
approximation of many-body theory. Single-particle wave functions are obtained
by solving the Schr\"odinger equation with a realistic one-dimensional model
potential, and the screened interaction is evaluated in the random-phase
approximation (RPA). Our results are in good agreement with the experimentally
determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
Energetic and spatial bonding properties from angular distributions of ultraviolet photoelectrons: application to the GaAs(110) surface
Angle-resolved ultraviolet photoemission spectra are interpreted by combining
the energetics and spatial properties of the contributing states. One-step
calculations are in excellent agreement with new azimuthal experimental data
for GaAs(110). Strong variations caused by the dispersion of the surface bands
permit an accurate mapping of the electronic structure. The delocalization of
the valence states is discussed analogous to photoelectron diffraction. The
spatial origin of the electrons is determined, and found to be strongly energy
dependent, with uv excitation probing the bonding region.Comment: 5 pages, 3 figures, submitted for publicatio
Cyber security fear appeals:unexpectedly complicated
Cyber security researchers are starting to experiment with fear appeals, with a wide variety of designs and reported efficaciousness. This makes it hard to derive recommendations for designing and deploying these interventions. We thus reviewed the wider fear appeal literature to arrive at a set of guidelines to assist cyber security researchers. Our review revealed a degree of dissent about whether or not fear appeals are indeed helpful and advisable. Our review also revealed a wide range of fear appeal experimental designs, in both cyber and other domains, which confirms the need for some standardized guidelines to inform practice in this respect. We propose a protocol for carrying out fear appeal experiments, and we review a sample of cyber security fear appeal studies, via this lens, to provide a snapshot of the current state of play. We hope the proposed experimental protocol will prove helpful to those who wish to engage in future cyber security fear appeal research
Can Doubly Strange Dibaryon Resonances be Discovered at RHIC?
The baryon-baryon continuum invariant mass spectrum generated from
relativistic nucleus + nucleus collision data may reveal the existence of
doubly-strange dibaryons not stable against strong decay if they lie within a
few MeV of threshold. Furthermore, since the dominant component of these states
is a superposition of two color-octet clusters which can be produced
intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced
production of dibaryon resonances could be a signal of QGP formation. A total
of eight, doubly-strange dibaryon states are considered for experimental search
using the STAR detector (Solenoidal Tracker at RHIC) at the new Relativistic
Heavy Ion Collider (RHIC). These states may decay to Lambda-Lambda and/or
proton-Cascade-minus, depending on the resonance energy. STAR's large
acceptance, precision tracking and vertex reconstruction capabilities, and
large data volume capacity, make it an ideal instrument to use for such a
search. Detector performance and analysis sensitivity are studied as a function
of resonance production rate and width for one particular dibaryon which can
directly strong decay to proton-Cascade-minus but not Lambda-Lambda. Results
indicate that such resonances may be discovered using STAR if the resonance
production rates are comparable to coalescence model predictions for dibaryon
bound states.Comment: 28 pages, 5 figures, revised versio
Spin-orbit splitting of image states
We quantify the effect of the spin-orbit interaction on the Rydberg-like
series of image state electrons at the (111) and (001) surface of Ir, Pt and
Au. Using relativistic multiple-scattering methods we find Rashba-like
dispersions with Delta E(K)=gamma K with values of gamma for n=1 states in the
range 38-88 meV Angstrom. Extending the phase-accumulation model to include
spin-orbit scattering we find that the splittings vary like 1/(n+a)^3 where a
is the quantum defect and that they are related to the probability of spin-flip
scattering at the surface. The splittings should be observable experimentally
being larger in magnitude than some exchange-splittings that have been resolved
by inverse photoemission, and are comparable to linewidths from inelastic
lifetimes.Comment: 10 pages, 4 figure
Self-energy of image states on copper surfaces
We report extensive calculations of the imaginary part of the electron
self-energy in the vicinity of the (100) and (111) surfaces of Cu. The
quasiparticle self-energy is computed by going beyond a free-electron
description of the metal surface, either within the GW approximation of
many-body theory or with inclusion, within the GW approximation, of
short-range exchange-correlation effects. Calculations of the decay rate of the
first three image states on Cu(100) and the first image state on Cu(111) are
also reported, and the impact of both band structure and many-body effects on
the electron relaxation process is discussed.Comment: 8 pages, 5 figures, to appear in Phys. Rev.
CDW, Superconductivity and Anomalous Metallic Behavior in 2D Transition Metal Dichalcogenides
We propose a theory for quasi-two-dimensional transition metal
dichalcogenides that provides a unified microscopic picture of the charge
density wave (CDW) and superconducting phases. We show, based on the
electron-phonon coupling and Fermi surface topology, that a CDW order parameter
with six-fold symmetry and nodes (f-wave) gives a consistent description of the
available experimental data. The elementary excitations in the CDW phase are
Dirac electrons. The superconducting state has its origin on the attractive
interaction mediated by phonons. The theory predicts strong deviations from
Fermi liquid theory in the CDW phase.Comment: 4 pages, 3 figure
- …
